30,305 research outputs found

    Investigation of integrating sphere measurement parameters

    Get PDF
    Directional and bidirectional reflectance of MgO sphere wall coatings, and directional characteristics of photomultiplier tub

    Two-Dimensional Scaling Limits via Marked Nonsimple Loops

    Full text link
    We postulate the existence of a natural Poissonian marking of the double (touching) points of SLE(6) and hence of the related continuum nonsimple loop process that describes macroscopic cluster boundaries in 2D critical percolation. We explain how these marked loops should yield continuum versions of near-critical percolation, dynamical percolation, minimal spanning trees and related plane filling curves, and invasion percolation. We show that this yields for some of the continuum objects a conformal covariance property that generalizes the conformal invariance of critical systems. It is an open problem to rigorously construct the continuum objects and to prove that they are indeed the scaling limits of the corresponding lattice objects.Comment: 25 pages, 5 figure

    Multi-beam Energy Moments of Multibeam Particle Velocity Distributions

    Full text link
    High resolution electron and ion velocity distributions, f(v), which consist of N effectively disjoint beams, have been measured by NASA's Magnetospheric Multi-Scale Mission (MMS) observatories and in reconnection simulations. Commonly used standard velocity moments generally assume a single mean-flow-velocity for the entire distribution, which can lead to counterintuitive results for a multibeam f(v). An example is the (false) standard thermal energy moment of a pair of equal and opposite cold particle beams, which is nonzero even though each beam has zero thermal energy. By contrast, a multibeam moment of two or more beams has no false thermal energy. A multibeam moment is obtained by taking a standard moment of each beam and then summing over beams. In this paper we will generalize these notions, explore their consequences and apply them to an f(v) which is sum of tri-Maxwellians. Both standard and multibeam energy moments have coherent and incoherent forms. Examples of incoherent moments are the thermal energy density, the pressure and the thermal energy flux (enthalpy flux plus heat flux). Corresponding coherent moments are the bulk kinetic energy density, the RAM pressure and the bulk kinetic energy flux. The false part of an incoherent moment is defined as the difference between the standard incoherent moment and the corresponding multibeam moment. The sum of a pair of corresponding coherent and incoherent moments will be called the undecomposed moment. Undecomposed moments are independent of whether the sum is standard or multibeam and therefore have advantages when studying moments of measured f(v).Comment: 27 single-spaced pages. Three Figure

    The Brownian Web: Characterization and Convergence

    Full text link
    The Brownian Web (BW) is the random network formally consisting of the paths of coalescing one-dimensional Brownian motions starting from every space-time point in R×R{\mathbb R}\times{\mathbb R}. We extend the earlier work of Arratia and of T\'oth and Werner by providing characterization and convergence results for the BW distribution, including convergence of the system of all coalescing random walkssktop/brownian web/finale/arXiv submits/bweb.tex to the BW under diffusive space-time scaling. We also provide characterization and convergence results for the Double Brownian Web, which combines the BW with its dual process of coalescing Brownian motions moving backwards in time, with forward and backward paths ``reflecting'' off each other. For the BW, deterministic space-time points are almost surely of ``type'' (0,1)(0,1) -- {\em zero} paths into the point from the past and exactly {\em one} path out of the point to the future; we determine the Hausdorff dimension for all types that actually occur: dimension 2 for type (0,1)(0,1), 3/2 for (1,1)(1,1) and (0,2)(0,2), 1 for (1,2)(1,2), and 0 for (2,1)(2,1) and (0,3)(0,3).Comment: 52 pages with 4 figure

    Signatures of Secondary Collisionless Magnetic Reconnection Driven by Kink Instability of a Flux Rope

    Full text link
    The kinetic features of secondary magnetic reconnection in a single flux rope undergoing internal kink instability are studied by means of three-dimensional Particle-in-Cell simulations. Several signatures of secondary magnetic reconnection are identified in the plane perpendicular to the flux rope: a quadrupolar electron and ion density structure and a bipolar Hall magnetic field develop in proximity of the reconnection region. The most intense electric fields form perpendicularly to the local magnetic field, and a reconnection electric field is identified in the plane perpendicular to the flux rope. An electron current develops along the reconnection line in the opposite direction of the electron current supporting the flux rope magnetic field structure. Along the reconnection line, several bipolar structures of the electric field parallel to the magnetic field occur making the magnetic reconnection region turbulent. The reported signatures of secondary magnetic reconnection can help to localize magnetic reconnection events in space, astrophysical and fusion plasmas
    • …
    corecore