36,552 research outputs found

    A New Theory of Consciousness: The Missing Link - Organization

    Get PDF
    What is consciousness and what is the missing link between the sensory input and the cortical centre in the brain for consciousness? In the literature there are more than a million pages written about consciousness. The perspectives range from the field of metaphysics to those of quantum mechanics. However, no one today has produced a theory which is universally accepted. Consciousness is “something” which the majority of humans know that they posses, they use it when they want to understand their environment. However, no individual human knows whether other humans also posses consciousness. unless some tests such as she is looking at me, he is talking etc., are performed. We are caught in an intellectual sort of recursive carousel – we need consciousness to understand consciousness. To understand consciousness we have to understand the mechanism of its function, which is to effectively organize sensory inputs from our environment. Consciousness is the outcome of the process of organizing these sensory inputs. This implies that organization is an act which precedes consciousness. Since every activity in nature is to organize/disorganize, what is the element which compels this action? I am proposing that just like energy is the physical element that causes action, there is another physical element I have called it NASCIUM which has the capacity to cause organization. This is the missing link. Understanding the nature of organization, i.e. nascium, will enhance our capability to understand consciousness

    Test techniques for evaluating flight displays

    Get PDF
    The rapid development of graphics technology allows for greater flexibility in aircraft displays, but display evaluation techniques have not kept pace. Historically, display evaluation has been based on subjective opinion and not on the actual aircraft/pilot performance. Existing electronic display specifications and evaluation techniques are reviewed. A display rating technique analogous to handling qualities ratings was developed and is recommended for future evaluations. The choice of evaluation pilots is also discussed and the use of a limited number of trained evaluators is recommended over the use of a large number of operational pilots

    Zero-Temperature Dynamics of Plus/Minus J Spin Glasses and Related Models

    Full text link
    We study zero-temperature, stochastic Ising models sigma(t) on a d-dimensional cubic lattice with (disordered) nearest-neighbor couplings independently chosen from a distribution mu on R and an initial spin configuration chosen uniformly at random. Given d, call mu type I (resp., type F) if, for every x in the lattice, sigma(x,t) flips infinitely (resp., only finitely) many times as t goes to infinity (with probability one) --- or else mixed type M. Models of type I and M exhibit a zero-temperature version of ``local non-equilibration''. For d=1, all types occur and the type of any mu is easy to determine. The main result of this paper is a proof that for d=2, plus/minus J models (where each coupling is independently chosen to be +J with probability alpha and -J with probability 1-alpha) are type M, unlike homogeneous models (type I) or continuous (finite mean) mu's (type F). We also prove that all other noncontinuous disordered systems are type M for any d greater than or equal to 2. The plus/minus J proof is noteworthy in that it is much less ``local'' than the other (simpler) proof. Homogeneous and plus/minus J models for d greater than or equal to 3 remain an open problem.Comment: 17 pages (RevTeX; 3 figures; to appear in Commun. Math. Phys.

    Interfaces (and Regional Congruence?) in Spin Glasses

    Full text link
    We present a general theorem restricting properties of interfaces between thermodynamic states and apply it to the spin glass excitations observed numerically by Krzakala-Martin and Palassini-Young in spatial dimensions d=3 and 4. We show that such excitations, with interface dimension smaller than d, cannot yield regionally congruent thermodynamic states. More generally, zero density interfaces of translation-covariant excitations cannot be pinned (by the disorder) in any d but rather must deflect to infinity in the thermodynamic limit. Additional consequences concerning regional congruence in spin glasses and other systems are discussed.Comment: 4 pages (ReVTeX); 1 figure; submitted to Physical Review Letter

    Clustering and preferential attachment in growing networks

    Get PDF
    We study empirically the time evolution of scientific collaboration networks in physics and biology. In these networks, two scientists are considered connected if they have coauthored one or more papers together. We show that the probability of scientists collaborating increases with the number of other collaborators they have in common, and that the probability of a particular scientist acquiring new collaborators increases with the number of his or her past collaborators. These results provide experimental evidence in favor of previously conjectured mechanisms for clustering and power-law degree distributions in networks.Comment: 13 pages, 2 figure

    Realistic spin glasses below eight dimensions: a highly disordered view

    Full text link
    By connecting realistic spin glass models at low temperature to the highly disordered model at zero temperature, we argue that ordinary Edwards-Anderson spin glasses below eight dimensions have at most a single pair of physically relevant pure states at nonzero low temperature. Less likely scenarios that evade this conclusion are also discussed.Comment: 18 pages (RevTeX; 1 figure; to appear in Physical Review E

    The Network of Scientific Collaborations within the European Framework Programme

    Full text link
    We use the emergent field of Complex Networks to analyze the network of scientific collaborations between entities (universities, research organizations, industry related companies,...) which collaborate in the context of the so-called Framework Programme. We demonstrate here that it is a scale--free network with an accelerated growth, which implies that the creation of new collaborations is encouraged. Moreover, these collaborations possess hierarchical modularity. Likewise, we find that the information flow depends on the size of the participants but not on geographical constraints.Comment: 13 pages, 6 figure

    Citation Networks in High Energy Physics

    Full text link
    The citation network constituted by the SPIRES data base is investigated empirically. The probability that a given paper in the SPIRES data base has kk citations is well described by simple power laws, P(k)kαP(k) \propto k^{-\alpha}, with α1.2\alpha \approx 1.2 for kk less than 50 citations and α2.3\alpha \approx 2.3 for 50 or more citations. Two models are presented that both represent the data well, one which generates power laws and one which generates a stretched exponential. It is not possible to discriminate between these models on the present empirical basis. A consideration of citation distribution by subfield shows that the citation patterns of high energy physics form a remarkably homogeneous network. Further, we utilize the knowledge of the citation distributions to demonstrate the extreme improbability that the citation records of selected individuals and institutions have been obtained by a random draw on the resulting distribution.Comment: 9 pages, 6 figures, 2 table
    corecore