845 research outputs found

    Anomalous Hydrodynamics

    Full text link
    Our goal is to examine the role of anomalies in the hydrodynamic regime of field theories. We employ methods based on gauge/gravity duality to examine R-charge anomalies in the hydrodynamic regime of stronly t'Hooft coupled, large N, N = 4 Super Yang-Mills. We use a single particle spectrum treatment based on the familiar "level crossing" picture of chiral anomalies to investigate thermalized, massless QED. In each case, we work in the presence of a homogeneous background magnetic field, and find the same result. Regardless of whether a paricular current is anomalously non-conserved or not, as long as it participates in an anomalous 3-pt. correlator, its constitutive relation recieves a new term, proportional to a product of the anomaly coefficient, the magnetic field, and any charge density participating in the anomaly. This agrees with results found by Alekseev et.al. for QED. We include a general, symmetry based argument for the presence of such terms, and use linear response theory to determine their coefficients in a model with anomalous global charges. This last method we apply to briefly examine baryon transport in chiral QCD in a strong magnetic field.Comment: 23 pages, 2 figures. To be submitted to JHE

    New Black Hole Solutions in Brans-Dicke Theory of Gravity

    Get PDF
    Existence check of non-trivial, stationary axisymmetric black hole solutions in Brans-Dicke theory of gravity in different direction from those of Penrose, Thorne and Dykla, and Hawking is performed. Namely, working directly with the known explicit spacetime solutions in Brans-Dicke theory, it is found that non-trivial Kerr-Newman-type black hole solutions different from general relativistic solutions could occur for the generic Brans-Dicke parameter values -5/2\leq \omega <-3/2. Finally, issues like whether these new black holes carry scalar hair and can really arise in nature and if they can, what the associated physical implications would be are discussed carefully.Comment: 20 pages, no figure, Revtex, version to appear in Phys. Rev.

    Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits

    Full text link
    Observations have established that extremely compact, massive objects are common in the universe. It is generally accepted that these objects are black holes. As observations improve, it becomes possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or with gravitational-waves) and to test whether they have the characteristics of black hole orbits in general relativity. Such measurements can be used to map the spacetime of a massive compact object, testing whether the object's multipoles satisfy the strict constraints of the black hole hypothesis. Such a test requires that we compare against objects with the ``wrong'' multipole structure. In this paper, we present tools for constructing bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. The spacetimes which we present are good deep into the strong field of the object -- we do not use a large r expansion, except to make contact with weak field intuition. Also, our spacetimes reduce to the black hole spacetimes of general relativity when the ``bumpiness'' is set to zero. We propose bumpy black holes as the foundation for a null experiment: if black hole candidates are the black holes of general relativity, their bumpiness should be zero. By comparing orbits in a bumpy spacetime with those of an astrophysical source, observations should be able to test this hypothesis, stringently testing whether they are the black holes of general relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR

    Continuous image distortion by astrophysical thick lenses

    Full text link
    Image distortion due to weak gravitational lensing is examined using a non-perturbative method of integrating the geodesic deviation and optical scalar equations along the null geodesics connecting the observer to a distant source. The method we develop continuously changes the shape of the pencil of rays from the source to the observer with no reference to lens planes in astrophysically relevant scenarios. We compare the projected area and the ratio of semi-major to semi-minor axes of the observed elliptical image shape for circular sources from the continuous, thick-lens method with the commonly assumed thin-lens approximation. We find that for truncated singular isothermal sphere and NFW models of realistic galaxy clusters, the commonly used thin-lens approximation is accurate to better than 1 part in 10^4 in predicting the image area and axes ratios. For asymmetric thick lenses consisting of two massive clusters separated along the line of sight in redshift up to \Delta z = 0.2, we find that modeling the image distortion as two clusters in a single lens plane does not produce relative errors in image area or axes ratio more than 0.5%Comment: accepted to GR

    Newtonian Analysis of Gravitational Waves from Naked Singularity

    Get PDF
    Spherical dust collapse generally forms a shell focusing naked singularity at the symmetric center. This naked singularity is massless. Further the Newtonian gravitational potential and speed of the dust fluid elements are everywhere much smaller than unity until the central shell focusing naked singularity formation if an appropriate initial condition is set up. Although such a situation is highly relativistic, the analysis by the Newtonian approximation scheme is available even in the vicinity of the space-time singularity. This remarkable feature makes the analysis of such singularity formation very easy. We investigate non-spherical even-parity matter perturbations in this scheme by complementary using numerical and semi-analytical approaches, and estimate linear gravitational waves generated in the neighborhood of the naked singularity by the quadrupole formula. The result shows good agreement with the relativistic perturbation analysis recently performed by Iguchi et al. The energy flux of the gravitational waves is finite but the space-time curvature carried by them diverges.Comment: 23 pages, 8 figure

    School Violence and the Culture of Honor

    Get PDF
    We investigated the hypothesis that a sociocultural variable known as the culture of honor would be uniquely predictive of school-violence indicators. Controlling for demographic characteristics associated in previous studies with violent crime among adults, we found that high-school students in culture-of-honor states were significantly more likely than high-school students in non-culture-of honor states to report having brought a weapon to school in the past month. Using data aggregated over a 20-year period, we also found that culture-of honor states had more than twice as many school shootings per capita as non-culture-of-honor states. The data revealed important differences between school violence and general patterns of homicide and are consistent with the view that many acts of school violence reflect retaliatory aggression springing from intensely experienced social-identity threats.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Quadratic Curvature Gravity with Second Order Trace and Massive Gravity Models in Three Dimensions

    Full text link
    The quadratic curvature lagrangians having metric field equations with second order trace are constructed relative to an orthonormal coframe. In n>4n>4 dimensions, pure quadratic curvature lagrangian having second order trace constructed contains three free parameters in the most general case. The fourth order field equations of some of these models, in arbitrary dimensions, are cast in a particular form using the Schouten tensor. As a consequence, the field equations for the New massive gravity theory are related to those of the Topologically massive gravity. In particular, the conditions under which the latter is "square root" of the former are presented.Comment: 24 pages, to appear in GR

    Approximate conditional distributions of distances between nodes in a two-dimensional sensor network

    Full text link
    When we represent a network of sensors in Euclidean space by a graph, there are two distances between any two nodes that we may consider. One of them is the Euclidean distance. The other is the distance between the two nodes in the graph, defined to be the number of edges on a shortest path between them. In this paper, we consider a network of sensors placed uniformly at random in a two-dimensional region and study two conditional distributions related to these distances. The first is the probability distribution of distances in the graph, conditioned on Euclidean distances; the other is the probability density function associated with Euclidean distances, conditioned on distances in the graph. We study these distributions both analytically (when feasible) and by means of simulations. To the best of our knowledge, our results constitute the first of their kind and open up the possibility of discovering improved solutions to certain sensor-network problems, as for example sensor localization

    Quintessence and Gravitational Waves

    Get PDF
    We investigate some aspects of quintessence models with a non-minimally coupled scalar field and in particular we show that it can behave as a component of matter with 3P/ρ0-3 \lesssim P/\rho \lesssim 0. We study the properties of gravitational waves in this class of models and discuss their energy spectrum and the cosmic microwave background anisotropies they induce. We also show that gravitational waves are damped by the anisotropic stress of the radiation and that their energy spectrum may help to distinguish between inverse power law potential and supergravity motivated potential. We finish by a discussion on the constraints arising from their density parameter \Omega_\GW.Comment: 21 pages, 18 figures, fianl version, accepted for publication in PR

    Constraining the electric charges of some astronomical bodies in Reissner-Nordstrom spacetimes and generic r^-2-type power-law potentials from orbital motions

    Full text link
    We put model-independent, dynamical constraints on the net electric charge Q of some astronomical and astrophysical objects by assuming that their exterior spacetimes are described by the Reissner-Nordstroem metric, which induces an additional potential U_RN \propto Q^2 r^-2. Our results extend to other hypothetical power-law interactions inducing extra-potentials U_pert = r^-2 as well (abridged).Comment: LaTex2e, 16 pages, 3 figures, no tables, 128 references. Version matching the one at press in General Relativity and Gravitation (GRG). arXiv admin note: substantial text overlap with arXiv:1112.351
    corecore