31,803 research outputs found

    Efficient configurational-bias Monte-Carlo simulations of chain molecules with `swarms' of trial configurations

    Full text link
    Proposed here is a dynamic Monte-Carlo algorithm that is efficient in simulating dense systems of long flexible chain molecules. It expands on the configurational-bias Monte-Carlo method through the simultaneous generation of a large set of trial configurations. This process is directed by attempting to terminate unfinished chains with a low statistical weight, and replacing these chains with clones (enrichments) of stronger chains. The efficiency of the resulting method is explored by simulating dense polymer brushes. A gain in efficiency of at least three orders of magnitude is observed with respect to the configurational-bias approach, and almost one order of magnitude with respect to recoil-growth Monte-Carlo. Furthermore, the inclusion of `waste recycling' is observed to be a powerful method for extracting meaningful statistics from the discarded configurations

    Threshold effects for two pathogens spreading on a network

    Full text link
    Diseases spread through host populations over the networks of contacts between individuals, and a number of results about this process have been derived in recent years by exploiting connections between epidemic processes and bond percolation on networks. Here we investigate the case of two pathogens in a single population, which has been the subject of recent interest among epidemiologists. We demonstrate that two pathogens competing for the same hosts can both spread through a population only for intermediate values of the bond occupation probability that lie above the classic epidemic threshold and below a second higher value, which we call the coexistence threshold, corresponding to a distinct topological phase transition in networked systems.Comment: 5 pages, 2 figure

    A user's manual for the Loaded Microstrip Antenna Code (LMAC)

    Get PDF
    The use of the Loaded Microstrip Antenna Code is described. The geometry of this antenna is shown and its dimensions are described in terms of the program outputs. The READ statements for the inputs are detailed and typical values are given where applicable. The inputs of four example problems are displayed with the corresponding output of the code given in the appendices

    Radiation and scattering from loaded microstrip antennas over a wide bandwidth

    Get PDF
    The integral equation and moment method solution is developed for two different antennas in the presence of an infinite grounded dielectric substrate. The first antenna is a rectangular microstrip patch antenna. This antenna is analyzed for excitation by an incident plane wave in free space and a vertical filament of uniform current in the dielectric. This antenna can be loaded by a lumped impedance in a vertical filament of uniform current extending from the patch through the dielectric to the ground plane. The radar cross section of the microstrip antenna is found from the plane wave excitation and shows good agreement to measurement for both an unloaded and loaded antenna. The input impedance is found from the current filament excitation. This is compared to the measured input impedance of a coaxially fed microstrip antenna and shows good agreement for both unloaded and loaded antennas when the dielectric substrate is much less than a wavelength. The second antenna is a vertical thin wire extending from the ground plane into or through the dielectric substrate. The mutual impedance between two imbedded monopoles is compared to a previous calculation

    Random graphs with clustering

    Full text link
    We offer a solution to a long-standing problem in the physics of networks, the creation of a plausible, solvable model of a network that displays clustering or transitivity -- the propensity for two neighbors of a network node also to be neighbors of one another. We show how standard random graph models can be generalized to incorporate clustering and give exact solutions for various properties of the resulting networks, including sizes of network components, size of the giant component if there is one, position of the phase transition at which the giant component forms, and position of the phase transition for percolation on the network.Comment: 5 pages, 2 figure

    Wang-Landau Algorithm: a Theoretical Analysis of the Saturation of the Error

    Get PDF
    In this work we present a theoretical analysis of the convergence of the Wang-Landau algorithm [Phys. Rev. Lett. 86, 2050 (2001)] which was introduced years ago to calculate the density of states in statistical models. We study the dynamical behavior of the error in the calculation of the density of states.We conclude that the source of the saturation of the error is due to the decreasing variations of the refinement parameter. To overcome this limitation, we present an analytical treatment in which the refinement parameter is scaled down as a power law instead of exponentially. An extension of the analysis to the N-fold way variation of the method is also discussed.Comment: 7 pages, 5 figure

    Mean-field solution of the small-world network model

    Full text link
    The small-world network model is a simple model of the structure of social networks, which simultaneously possesses characteristics of both regular lattices and random graphs. The model consists of a one-dimensional lattice with a low density of shortcuts added between randomly selected pairs of points. These shortcuts greatly reduce the typical path length between any two points on the lattice. We present a mean-field solution for the average path length and for the distribution of path lengths in the model. This solution is exact in the limit of large system size and either large or small number of shortcuts.Comment: 14 pages, 2 postscript figure

    Temperature-stable Gunn-diode oscillator

    Get PDF
    Oscillator consisting of Gunn diode embedded in coaxial circuit has excellent temperature stability and low fabrication costs as compared with automatic-frequency-control crystal oscillators

    Interfaces (and Regional Congruence?) in Spin Glasses

    Full text link
    We present a general theorem restricting properties of interfaces between thermodynamic states and apply it to the spin glass excitations observed numerically by Krzakala-Martin and Palassini-Young in spatial dimensions d=3 and 4. We show that such excitations, with interface dimension smaller than d, cannot yield regionally congruent thermodynamic states. More generally, zero density interfaces of translation-covariant excitations cannot be pinned (by the disorder) in any d but rather must deflect to infinity in the thermodynamic limit. Additional consequences concerning regional congruence in spin glasses and other systems are discussed.Comment: 4 pages (ReVTeX); 1 figure; submitted to Physical Review Letter
    • …
    corecore