2,100 research outputs found

    Temperature dependence of interlayer coupling in perpendicular magnetic tunnel junctions with GdOx barriers

    Full text link
    Perpendicular magnetic tunnel junctions with GdOX tunneling barriers have shown a unique voltage controllable interlayer magnetic coupling effect. Here we investigate the quality of the GdOX barrier and the coupling mechanism in these junctions by examining the temperature dependence of the tunneling magnetoresistance and the interlayer coupling from room temperature down to 11 K. The barrier is shown to be of good quality with the spin independent conductance only contributing a small portion, 14%, to the total room temperature conductance, similar to AlOX and MgO barriers. The interlayer coupling, however, shows an anomalously strong temperature dependence including sign changes below 80 K. This non-trivial temperature dependence is not described by previous models of interlayer coupling and may be due to the large induced magnetic moment of the Gd ions in the barrier.Comment: 14 pages, 4 figure

    Smooth and Non-Smooth Dependence of Lyapunov Vectors upon the Angle Variable on a Torus in the Context of Torus-Doubling Transitions in the Quasiperiodically Forced Henon Map

    Get PDF
    A transition from a smooth torus to a chaotic attractor in quasiperiodically forced dissipative systems may occur after a finite number of torus-doubling bifurcations. In this paper we investigate the underlying bifurcational mechanism which seems to be responsible for the termination of the torus-doubling cascades on the routes to chaos in invertible maps under external quasiperiodic forcing. We consider the structure of a vicinity of a smooth attracting invariant curve (torus) in the quasiperiodically forced Henon map and characterize it in terms of Lyapunov vectors, which determine directions of contraction for an element of phase space in a vicinity of the torus. When the dependence of the Lyapunov vectors upon the angle variable on the torus is smooth, regular torus-doubling bifurcation takes place. On the other hand, the onset of non-smooth dependence leads to a new phenomenon terminating the torus-doubling bifurcation line in the parameter space with the torus transforming directly into a strange nonchaotic attractor. We argue that the new phenomenon plays a key role in mechanisms of transition to chaos in quasiperiodically forced invertible dynamical systems.Comment: 24 pages, 9 figure

    On stochastic sea of the standard map

    Full text link
    Consider a generic one-parameter unfolding of a homoclinic tangency of an area preserving surface diffeomorphism. We show that for many parameters (residual subset in an open set approaching the critical value) the corresponding diffeomorphism has a transitive invariant set Ω\Omega of full Hausdorff dimension. The set Ω\Omega is a topological limit of hyperbolic sets and is accumulated by elliptic islands. As an application we prove that stochastic sea of the standard map has full Hausdorff dimension for sufficiently large topologically generic parameters.Comment: 36 pages, 5 figure

    Piecewise Linear Models for the Quasiperiodic Transition to Chaos

    Full text link
    We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non-trivial but essentially solvable models for the phenomenon of mode-locking and the quasi-periodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non-zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low-order spline approximations to the classic ``sine-circle'' map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction.Comment: 75 pages, plain TeX, 47 figures (available on request

    Polynomial diffeomorphisms of C^2, IV: The measure of maximal entropy and laminar currents

    Full text link
    This paper concerns the dynamics of polynomial automorphisms of C2{\bf C}^2. One can associate to such an automorphism two currents μ±\mu^\pm and the equilibrium measure μ=μ+μ\mu=\mu^+\wedge\mu^-. In this paper we study some geometric and dynamical properties of these objects. First, we characterize μ\mu as the unique measure of maximal entropy. Then we show that the measure μ\mu has a local product structure and that the currents μ±\mu^\pm have a laminar structure. This allows us to deduce information about periodic points and heteroclinic intersections. For example, we prove that the support of μ\mu coincides with the closure of the set of saddle points. The methods used combine the pluripotential theory with the theory of non-uniformly hyperbolic dynamical systems

    A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations

    Get PDF
    The purpose of this paper is to enhance a correspondence between the dynamics of the differential equations y˙(t)=g(y(t))\dot y(t)=g(y(t)) on Rd\mathbb{R}^d and those of the parabolic equations u˙=Δu+f(x,u,u)\dot u=\Delta u +f(x,u,\nabla u) on a bounded domain Ω\Omega. We give details on the similarities of these dynamics in the cases d=1d=1, d=2d=2 and d3d\geq 3 and in the corresponding cases Ω=(0,1)\Omega=(0,1), Ω=T1\Omega=\mathbb{T}^1 and dim(Ω\Omega)2\geq 2 respectively. In addition to the beauty of such a correspondence, this could serve as a guideline for future research on the dynamics of parabolic equations

    Entropy production and Lyapunov instability at the onset of turbulent convection

    Full text link
    Computer simulations of a compressible fluid, convecting heat in two dimensions, suggest that, within a range of Rayleigh numbers, two distinctly different, but stable, time-dependent flow morphologies are possible. The simpler of the flows has two characteristic frequencies: the rotation frequency of the convecting rolls, and the vertical oscillation frequency of the rolls. Observables, such as the heat flux, have a simple-periodic (harmonic) time dependence. The more complex flow has at least one additional characteristic frequency -- the horizontal frequency of the cold, downward- and the warm, upward-flowing plumes. Observables of this latter flow have a broadband frequency distribution. The two flow morphologies, at the same Rayleigh number, have different rates of entropy production and different Lyapunov exponents. The simpler "harmonic" flow transports more heat (produces entropy at a greater rate), whereas the more complex "chaotic" flow has a larger maximum Lyapunov exponent (corresponding to a larger rate of phase-space information loss). A linear combination of these two rates is invariant for the two flow morphologies over the entire range of Rayleigh numbers for which the flows coexist, suggesting a relation between the two rates near the onset of convective turbulence.Comment: 5 pages, 4 figure

    Sur les exposants de Lyapounov des applications meromorphes

    Full text link
    Let f be a dominating meromorphic self-map of a compact Kahler manifold. We give an inequality for the Lyapounov exponents of some ergodic measures of f using the metric entropy and the dynamical degrees of f. We deduce the hyperbolicity of some measures.Comment: 27 pages, paper in french, final version: to appear in Inventiones Mat

    OPEN XAL Status Report 2015

    Get PDF
    MOPW1050International audienceOpen XAL is an accelerator physics software platformdeveloped in collaboration among several facilitiesaround the world. The Open XAL collaboration wasformed in 2010 to port, improve and extend the successfulXAL platform used at the Spallation Neutron Source foruse in the broader accelerator community and to establishit as the standard platform for accelerator physicssoftware. The site-independent core is complete, activeapplications have been ported, and now we are in theprocess of verification and transitioning to using OpenXAL in production. This paper will present the currentstatus and a roadmap for this project
    corecore