171 research outputs found

    Multiple endocrine neoplasia

    Get PDF

    MEN1 Surveillance Guidelines:Time to (re)Think?

    Get PDF
    Clinical practice guidelines for patients with multiple endocrine neoplasia type 1 (MEN1) recommend a variety of surveillance options. Given progress over the past decade in this area, it is timely to evaluate their ongoing utility. MEN1 is characterized by the development of synchronous or asynchronous tumors affecting a multitude of endocrine and nonendocrine tissues, resulting in premature morbidity and mortality, such that the rationale for undertaking surveillance screening in at-risk individuals appears robust. Current guidelines recommend an intensive regimen of clinical, biochemical, and radiological surveillance commencing in early childhood for those with a clinical or genetic diagnosis of MEN1, with the aim of early tumor detection and treatment. Although it is tempting to assume that such screening results in patient benefits and improved outcomes, the lack of a strong evidence base for several aspects of MEN1 care, and the potential for iatrogenic harms related to screening tests or interventions of unproven benefit, make such assumptions potentially unsound. Furthermore, the psychological as well as economic burdens of intensive screening remain largely unstudied. Although screening undoubtedly constitutes an important component of MEN1 patient care, this perspective aims to highlight some of the current uncertainties and challenges related to existing MEN1 guidelines with a particular focus on the role of screening for presymptomatic tumors. Looking forward, a screening approach that acknowledges these limitations and uncertainties and places the patient at the heart of the decision-making process is advocated

    Morbidity and mortality in patients with hyperprolactinaemia:the PROLEARS study

    Get PDF
    Purpose: High serum prolactin concentrations have been associated with adverse health outcomes in some but not all studies. This study aimed to examine the morbidity and all-cause mortality associated with hyperprolactinaemia. Methods: A population-based matched cohort study in Tayside (Scotland, UK) from 1988 to 2014 was performed. Record-linkage technology was used to identify patients with hyperprolactinaemia that were compared to an age–sex-matched cohort of patients free of hyperprolactinaemia. The number of deaths and incident admissions with diabetes mellitus, cardiovascular disease, cancer, breast cancer, bone fractures and infectious conditions were compared by the survival analysis. Results: Patients with hyperprolactinaemia related to pituitary tumours had no increased risk of diabetes, cardiovascular disease, bone fractures, all-cause cancer or breast cancer. Whilst no increased mortality was observed in patients with pituitary microadenomas (HR = 1.65, 95% CI: 0.79–3.44), other subgroups including those with pituitary macroadenomas and drug-induced and idiopathic hyperprolactinaemia demonstrated an increased risk of death. Individuals with drug-induced hyperprolactinaemia also demonstrated increased risks of diabetes, cardiovascular disease, infectious disease and bone fracture. However, these increased risks were not associated with the degree of serum prolactin elevation (Ptrend > 0.3). No increased risk of cancer was observed in any subgroup. Conclusions: No excess morbidity was observed in patients with raised prolactin due to pituitary tumours. Although the increased morbidity and mortality associated with defined patient subgroups are unlikely to be directly related to the elevation in serum prolactin, hyperprolactinaemia might act as a biomarker for the presence of some increased disease risk in these patients

    Genetic Approaches to Metabolic Bone Diseases

    Get PDF
    Metabolic bone diseases comprise a diverse group of disorders characterized by alterations in skeletal homeostasis, and are often associated with abnormal circulating concentrations of calcium, phosphate or vitamin D metabolites. These diseases commonly have a genetic basis and represent either a monogenic disorder due to a germline or somatic single gene mutation, or an oligogenic or polygenic disorder that involves variants in more than one gene. Germline single gene mutations causing Mendelian diseases typically have a high penetrance, whereas the genetic variations causing oligogenic or polygenic disorders are each associated with smaller effects with additional contributions from environmental factors. Recognition of familial monogenic disorders is of clinical importance to facilitate timely investigations and management of the patient and any affected relatives. The diagnosis of monogenic metabolic bone disease requires careful clinical evaluation of the large diversity of symptoms and signs associated with these disorders. Thus, the clinician must pursue a systematic approach beginning with a detailed history and physical examination, followed by appropriate laboratory and skeletal imaging evaluations. Finally, the clinician must understand the increasing number and complexity of molecular genetic tests available to ensure their appropriate use and interpretation.</p

    Genetic background influences tumour development in heterozygous Men1 knockout mice

    Get PDF
    Multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disorder caused by MEN1 germline mutations, is characterised by parathyroid, pancreatic and pituitary tumours. MEN1 mutations also cause familial isolated primary hyperparathyroidism (FIHP), a milder condition causing hyperparathyroidism only. Identical mutations can cause either MEN1 or FIHP in different families, thereby implicating a role for genetic modifiers in altering phenotypic expression of tumours. We therefore investigated the effects of genetic background and potential for genetic modifiers on tumour development in adult Men1+/- mice, which develop tumours of the parathyroids, pancreatic islets, anterior pituitary, adrenal cortex and gonads, that had been backcrossed to generate C57BL/6 and 129S6/SvEv congenic strains. A total of 275 Men1+/- mice, aged 5–26 months were macroscopically studied, and this revealed that genetic background significantly influenced the development of pituitary, adrenal and ovarian tumours, which occurred in mice over 12 months of age and more frequently in C57BL/6 females, 129S6/SvEv males and 129S6/SvEv females, respectively. Moreover, pituitary and adrenal tumours developed earlier, in C57BL/6 males and 129S6/SvEv females, respectively, and pancreatic and testicular tumours developed earlier in 129S6/SvEv males. Furthermore, glucagon-positive staining pancreatic tumours occurred more frequently in 129S6/SvEv Men1+/- mice. Whole genome sequence analysis of 129S6/SvEv and C57BL/6 Men1+/- mice revealed >54,000 different variants in >300 genes. These included, Coq7, Dmpk, Ccne2, Kras, Wnt2b, Il3ra and Tnfrsf10a, and qRT-PCR analysis revealed that Kras was significantly higher in pituitaries of male 129S6/SvEv mice. Thus, our results demonstrate that Kras and other genes could represent possible genetic modifiers of Men1

    Identification of 4 New Loci Associated With Primary Hyperparathyroidism (PHPT) and a Polygenic Risk Score for PHPT

    Get PDF
    CONTEXT: A hypothesis-free genetic association analysis has not been reported for patients with primary hyperparathyroidism (PHPT). OBJECTIVE: We aimed to investigate genetic associations with PHPT using both genome-wide association study (GWAS) and candidate gene approaches. METHODS: A cross-sectional study was conducted among patients of European White ethnicity recruited in Tayside (Scotland, UK). Electronic medical records were used to identify PHPT cases and controls, and linked to genetic biobank data. Genetic associations were performed by logistic regression models and odds ratios (ORs). The combined effect of the genotypes was researched by genetic risk score (GRS) analysis. RESULTS: We identified 15 622 individuals for the GWAS that yielded 34 top single-nucleotide variations (formerly single-nucleotide polymorphisms), and LPAR3-rs147672681 reached genome-wide statistical significance (P = 1.2e-08). Using a more restricted PHPT definition, 8722 individuals with data on the GWAS-identified loci were found. Age- and sex-adjusted ORs for the effect alleles of SOX9-rs11656269, SLITRK5-rs185436526, and BCDIN3D-AS1-rs2045094 showed statistically significant increased risks (P < 1.5e-03). GRS analysis of 5482 individuals showed an OR of 2.51 (P = 1.6e-04), 3.78 (P = 4.0e-08), and 7.71 (P = 5.3e-17) for the second, third, and fourth quartiles, respectively, compared to the first, and there was a statistically significant linear trend across quartiles (P < 1.0e-04). Results were similar when stratifying by sex. CONCLUSION: Using genetic loci discovered in a GWAS of PHPT carried out in a Scottish population, this study suggests new evidence for the involvement of genetic variants at SOX9, SLITRK5, LPAR3, and BCDIN3D-AS1. It also suggests that male and female carriers of greater numbers of PHPT-risk alleles both have a statistically significant increased risk of PHPT

    MiR-15a/miR-16-1 expression inversely correlates with cyclin D1 levels in Men1 pituitary NETs

    Get PDF
    Multiple Endocrine Neoplasia type 1 (MEN1) is an autosomal dominant disorder characterised by the combined occurrence of parathyroid, pituitary and pancreatic islet tumours, and is due to mutations of the MEN1 gene, which encodes the tumour suppressor protein menin. Menin has multiple roles in genome stability, transcription, cell division and proliferation, but its mechanistic roles in tumourigenesis remain to be fully elucidated. MicroRNAs (miRNA) are non-coding single stranded RNAs that post-transcriptionally regulate gene expression and have been associated with tumour development, although the contribution of miRNAs to MEN1-associated tumourigenesis and their relationship with menin expression are not fully understood. Alterations in miRNA expression, including downregulation of three putative ‘tumour suppressor’ miRNAs, miR-15a, miR-16-1 and let 7a, have been reported in several tumour types including non-MEN1 pituitary adenomas. We have therefore investigated the expression of miR-15a, miR-16-1 and let-7a in pituitary tumours that developed after 12 months of age in female mice with heterozygous knock out of the Men1 gene (Men1+/- 41 mice). The miRNAs miR-15a, miR-16-1 and let-7a were significantly downregulated in pituitary tumours (by 2.3-fold, p<0.05; 2.1-fold p<0.01 and 1.6-fold p<0.05, respectively) of Men1+/- 43 mice, compared to normal wild type pituitaries. MiR-15a and miR-16-1 expression inversely correlated with expression of cyclin D1, a known pro-tumourigenic target of these miRNAs, and knock down of menin in a human cancer cell line (HeLa), and AtT20 mouse pituitary cell line resulted in significantly decreased expression of miR-15a (p<0.05), indicating that the decrease in miR-15a may be a direct result of lost menin expression

    Can Modus Vivendi Save Liberalism from Moralism? A Critical Assessment of John Gray’s Political Realism

    Get PDF
    This chapter assesses John Gray’s modus vivendi-based justification for liberalism. I argue that his approach is preferable to the more orthodox deontological or teleological justificatory strategies, at least because of the way it can deal with the problem of diversity. But then I show how that is not good news for liberalism, for grounding liberal political authority in a modus vivendi undermines liberalism’s aspiration to occupy a privileged normative position vis-à-vis other kinds of regimes. So modus vivendi can save liberalism from moralism, but at cost many liberals will not be prepared to pay
    • …
    corecore