6,129 research outputs found

    SSME main combustion chamber life prediction

    Get PDF
    Typically, low cycle fatigue life is a function of the cyclic strain range, the material properties, and the operating temperature. The reusable life is normally defined by the number of strain cycles that can be accrued before severe material degradation occurs. Reusable life is normally signified by the initiation or propagation of surface cracks. Hot-fire testing of channel wall combustors has shown significant mid-channel wall thinning or deformation during accrued cyclic testing. This phenomenon is termed cyclic-creep and appears to be significantly accelerated at elevated surface temperatures. This failure mode was analytically modelled. The cyclic life of the baseline SSME-MCC based on measured calorimeter heat transfer data, and the life sensitivity of local hot spots caused by injector effects were determined. Four life enhanced designs were assessed

    Composite load spectra for select space propulsion structural components

    Get PDF
    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts and system ducting. These models will be developed using two independent approaches. The first approach consists of using state-of-the-art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The methodology required to combine the various individual load simulation models (hot-gas dynamic, vibrations, instantaneous position, centrifugal field, etc.) into composite load spectra simulation models will be developed under this program. A computer code incorporating the various individual and composite load spectra models will be developed to construct the specific load model desired. The second approach, which is covered under the options portion of the contract, will consist of developing coupled models for composite load spectra simulation which combine the (deterministic) models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data. This report covers the efforts of the third year of the contract. The overall program status is that the turbine blade loads have been completed and implemented. The transfer duct loads are defined and are being implemented. The thermal loads for all components are defined and coding is being developed. A dynamic pressure load model is under development. The parallel work on the probabilistic methodology is essentially completed. The overall effort is being integrated in an expert system code specifically developed for this project

    Composite load spectra for select space propulsion structural components

    Get PDF
    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data

    Composite load spectra for select space propulsion structural components

    Get PDF
    The objective of the Composite Load Spectra (CLS) project is to build a knowledge based system to synthesize probabilistic loads for selected space propulsion engine components. The knowledge based system has a load expert system module and a load calculation module. The load expert system provides load information and the load calculation module generates the probabilistic load distributions. The engine loads are divided into 4 broad classes: the engine independent loads, the engine system dependent load, the component local independent loads and the component loads. These classes are defined and illustrated

    The composite load spectra project

    Get PDF
    Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it

    Composite load spectra for select space propulsion structural components

    Get PDF
    The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts

    Molecular evidence for sediment nitrogen fixation in a temperate New England estuary

    Get PDF
    Primary production in coastal waters is generally nitrogen (N) limited with denitrification outpacing nitrogen fixation (N2-fixation). However, recent work suggests that we have potentially underestimated the importance of heterotrophic sediment N2-fixation in marine ecosystems. We used clone libraries to examine transcript diversity of nifH (a gene associated with N2-fixation) in sediments at three sites in a temperate New England estuary (Waquoit Bay, Massachusetts, USA) and compared our results to net sediment N2 fluxes previously measured at these sites. We observed nifH expression at all sites, including a site heavily impacted by anthropogenic N. At this N impacted site, we also observed mean net sediment N2-fixation, linking the geochemical rate measurement with nifH expression. This same site also had the lowest diversity (non-parametric Shannon = 2.75). At the two other sites, we also detected nifH transcripts, however, the mean N2 flux indicated net denitrification. These results suggest that N2-fixation and denitrification co-occur in these sediments. Of the unique sequences in this study, 67% were most closely related to uncultured bacteria from various marine environments, 17% to Cluster III, 15% to Cluster I, and only 1% to Cluster II. These data add to the growing body of literature that sediment heterotrophic N2-fixation, even under high inorganic nitrogen concentrations, may be an important yet overlooked source of N in coastal systems

    High Density Mesoscopic Atom Clouds in a Holographic Atom Trap

    Full text link
    We demonstrate the production of micron-sized high density atom clouds of interest for meso- scopic quantum information processing. We evaporate atoms from 60 microK, 3x10^14 atoms/cm^3 samples contained in a highly anisotropic optical lattice formed by interfering di racted beams from a holographic phase plate. After evaporating to 1 microK by lowering the con ning potential, in less than a second the atom density reduces to 8x10^13 cm^- 3 at a phase space density approaching unity. Adiabatic recompression of the atoms then increases the density to levels in excess of 1x10^15 cm^-3. The resulting clouds are typically 8 microns in the longest dimension. Such samples are small enough to enable mesoscopic quantum manipulation using Rydberg blockade and have the high densities required to investigate new collision phenomena.Comment: 4 pages, 4 figures, submitted to PR
    corecore