1,639 research outputs found

    Chemical transport across the ITCZ in the central Pacific during an El Niño-Southern Oscillation cold phase event in March-April 1999

    Get PDF
    We examine interhemispheric transport processes that occurred over the central Pacific during the PEM-Tropics B mission (PTB) in March-April 1999 by correlating the observed distribution of chemical tracers with the prevailing and anomalous windfields. The Intertropical Convergence Zone (ITCZ) had a double structure during PTB, and interhemispheric mixing occurred in the equatorial region between ITCZ branches. The anomalously strong tropical easterly surface wind had a large northerly component across the equator in the central Pacific, causing transport of aged, polluted air into the Southern Hemisphere (SH) at altitudes below 4 km. Elevated concentrations of chemical tracers from the Northern Hemisphere (NH) measured south of the equator in the central Pacific during PTB may represent an upper limit because the coincidence of seasonal and cold phase ENSO conditions are optimum for this transport. Stronger and more consistent surface convergence between the northeasterly and southeasterly trade winds in the Southern Hemisphere (SH) resulted in more total convective activity in the SH branch of the ITCZ, at about 6° S. The middle troposphere between 4-7 km was a complex shear zone between prevailing northeasterly winds at low altitudes and southwesterly winds at higher altitudes. Persistent anomalous streamline patterns and the chemical tracer distribution show that during PTB most transport in the central Pacific was from SH to NH across the equator in the upper troposphere. Seasonal differences in source strength caused larger interhemispheric gradients of chemical tracers during PTB than during the complementary PEM-Tropics A mission in September-October 1996. Copyright 2001 by the American Geophysical Union

    Explicit and Exact Solutions to a Kolmogorov-Petrovskii-Piskunov Equation

    Full text link
    Some explicit traveling wave solutions to a Kolmogorov-Petrovskii-Piskunov equation are presented through two ans\"atze. By a Cole-Hopf transformation, this Kolmogorov-Petrovskii-Piskunov equation is also written as a bilinear equation and further two solutions to describe nonlinear interaction of traveling waves are generated. B\"acklund transformations of the linear form and some special cases are considered.Comment: 14pages, Latex, to appear in Intern. J. Nonlinear Mechanics, the original latex file is not complet

    Numerical study on diverging probability density function of flat-top solitons in an extended Korteweg-de Vries equation

    Full text link
    We consider an extended Korteweg-de Vries (eKdV) equation, the usual Korteweg-de Vries equation with inclusion of an additional cubic nonlinearity. We investigate the statistical behaviour of flat-top solitary waves described by an eKdV equation in the presence of weak dissipative disorder in the linear growth/damping term. With the weak disorder in the system, the amplitude of solitary wave randomly fluctuates during evolution. We demonstrate numerically that the probability density function of a solitary wave parameter κ\kappa which characterizes the soliton amplitude exhibits loglognormal divergence near the maximum possible κ\kappa value.Comment: 8 pages, 4 figure

    Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery

    Get PDF
    Automatic multi-class object detection in remote sensing images in unconstrained scenarios is of high interest for several applications including traffic monitoring and disaster management. The huge variation in object scale, orientation, category, and complex backgrounds, as well as the different camera sensors pose great challenges for current algorithms. In this work, we propose a new method consisting of a novel joint image cascade and feature pyramid network with multi-size convolution kernels to extract multi-scale strong and weak semantic features. These features are fed into rotation-based region proposal and region of interest networks to produce object detections. Finally, rotational non-maximum suppression is applied to remove redundant detections. During training, we minimize joint horizontal and oriented bounding box loss functions, as well as a novel loss that enforces oriented boxes to be rectangular. Our method achieves 68.16% mAP on horizontal and 72.45% mAP on oriented bounding box detection tasks on the challenging DOTA dataset, outperforming all published methods by a large margin (+6% and +12% absolute improvement, respectively). Furthermore, it generalizes to two other datasets, NWPU VHR-10 and UCAS-AOD, and achieves competitive results with the baselines even when trained on DOTA. Our method can be deployed in multi-class object detection applications, regardless of the image and object scales and orientations, making it a great choice for unconstrained aerial and satellite imagery.Comment: ACCV 201

    Cognitive architectures as Lakatosian research programmes: two case studies

    Get PDF
    Cognitive architectures - task-general theories of the structure and function of the complete cognitive system - are sometimes argued to be more akin to frameworks or belief systems than scientific theories. The argument stems from the apparent non-falsifiability of existing cognitive architectures. Newell was aware of this criticism and argued that architectures should be viewed not as theories subject to Popperian falsification, but rather as Lakatosian research programs based on cumulative growth. Newell's argument is undermined because he failed to demonstrate that the development of Soar, his own candidate architecture, adhered to Lakatosian principles. This paper presents detailed case studies of the development of two cognitive architectures, Soar and ACT-R, from a Lakatosian perspective. It is demonstrated that both are broadly Lakatosian, but that in both cases there have been theoretical progressions that, according to Lakatosian criteria, are pseudo-scientific. Thus, Newell's defense of Soar as a scientific rather than pseudo-scientific theory is not supported in practice. The ACT series of architectures has fewer pseudo-scientific progressions than Soar, but it too is vulnerable to accusations of pseudo-science. From this analysis, it is argued that successive versions of theories of the human cognitive architecture must explicitly address five questions to maintain scientific credibility

    Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: Results from PEM-Tropics B field experiment

    Get PDF
    Eighteen long-range flights over the Pacific Ocean between 38° S to 20° N and 166° E to 90° W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The data from each flight were binned by altitude according to air mass type, and these results showed the relative observational frequency of the different air masses as a function of altitude in seven regions over the Pacific. The average chemical composition of the major air mass types was determined from in situ measurements in the NH and SH, and these results provided insight into the origin, lifetime, and chemistry of the air in these regions. Copyright 2001 by the American Geophysical Union

    Higher Order Potential Expansion for the Continuous Limits of the Toda Hierarchy

    Full text link
    A method for introducing the higher order terms in the potential expansion to study the continuous limits of the Toda hierarchy is proposed in this paper. The method ensures that the higher order terms are differential polynomials of the lower ones and can be continued to be performed indefinitly. By introducing the higher order terms, the fewer equations in the Toda hierarchy are needed in the so-called recombination method to recover the KdV hierarchy. It is shown that the Lax pairs, the Poisson tensors, and the Hamiltonians of the Toda hierarchy tend towards the corresponding ones of the KdV hierarchy in continuous limit.Comment: 20 pages, Latex, to be published in Journal of Physics
    corecore