201 research outputs found

    Higher Throughput Methods of Identifying T Cell Epitopes for Studying Outcomes of Altered Antigen Processing and Presentation

    Get PDF
    Variation in the mechanisms that mediate antigen processing, MHC-loading and presentation of peptides allows cells to significantly modulate the repertoire of peptides presented by both MHC Class I or Class II. To more quickly determine how these different modes or modulations of presentation translate into altered immune responses, higher throughput methods for identifying T cell epitopes are needed. Proteomics-based comprehensive cataloging of peptides eluted from MHC is a challenging but ideal way of identifying peptide sequences influenced by variable modes of processing and presentation. Several groups have already been successful with this approach and ongoing technical improvements will broaden its applicability. Subsequently, high content combinatorial peptide-MHC tetramer staining using mass cytometry, as we have recently described, should enable the broad assessment of how these changes are perceived by T cells and translated into an altered immune response. The importance of this analysis is highlighted by evidence that physiologically relevant variation in antigen processing and presentation as well as other factors can give rise to unpredictably different T cell responses

    Transcript for Episode 03: Big Change Coming: Governor Forrest Anderson\u27s Unprecedented Preparation for Bringing Change

    Get PDF
    https://digitalcommons.mtech.edu/crucible_transcriptions/1002/thumbnail.jp

    Determining T-cell specificity to understand and treat disease

    Get PDF

    Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging

    Get PDF
    Aging is associated with an increased susceptibility to infection and a failure to control latent viruses thought to be driven, at least in part, by alterations in CD8 T cell function. The aging T cell repertoire is characterized by an accumulation of effector CD8 T cells, many of which express the negative regulatory receptor CD85j. To define the biological significance of CD85j expression on CD8 T cells and to address the question whether presence of CD85j in older individuals is beneficial or detrimental for immune function, we examined the specific attributes of CD8 T cells expressing CD85j as well as the functional role of CD85j in antigen-specific CD8 T cell responses during immune aging. Here, we show that CD85j is mainly expressed by terminally differentiated effector (TEMRAs) CD8 T cells, which increase with age, in cytomegalovirus (CMV) infection and in males. CD85j+ CMV-specific cells demonstrate clonal expansion. However, TCR diversity is similar between CD85j+ and CD85j− compartments, suggesting that CD85j does not directly impact the repertoire of antigen-specific cells. Further phenotypic and functional analyses revealed that CD85j identifies a specific subset of CMV-responsive CD8 T cells that coexpress a marker of senescence (CD57) but retain polyfunctional cytokine production and expression of cytotoxic mediators. Blocking CD85j binding enhanced proliferation of CMV-specific CD8 T cells upon antigen stimulation but did not alter polyfunctional cytokine production. Taken together, these data demonstrate that CD85j characterizes a population of “senescent,” but not exhausted antigen-specific effector CD8 T cells and indicates that CD85j is an important checkpoint regulator controlling expansion of virus-specific T cells during aging. Inhibition of CD85j activity may be a mechanism to promote stronger CD8 T cell effector responses during immune aging

    CD103+ Dendritic Cells Control Th17 Cell Function in the Lung

    Get PDF
    Th17 cells express diverse functional programs while retaining their Th17 identity, in some cases exhibiting a stem-cell-like phenotype. Whereas the importance of Th17 cell regulation in autoimmune and infectious diseases is firmly established, the signaling pathways controlling their plasticity are undefined. Using a mouse model of invasive pulmonary aspergillosis, we found that lung CD103+ dendritic cells (DCs) would produce IL-2, dependent on NFAT signaling, leading to an optimally protective Th17 response. The absence of IL-2 in DCs caused unrestrained production of IL-23 and fatal hyperinflammation, which was characterized by strong Th17 polarization and the emergence of a Th17 stem-cell-like population. Although several cell types may be affected by deficient IL-2 production in DCs, our findings identify the balance between IL-2 and IL-23 productions by lung DCs as an important regulator of the local inflammatory response to infection

    Clonal Deletion Prunes but Does Not Eliminate Self-Specific αβ CD8+ T Lymphocytes

    Get PDF
    SummaryIt has long been thought that clonal deletion efficiently removes almost all self-specific T cells from the peripheral repertoire. We found that self-peptide MHC-specific CD8+ T cells in the blood of healthy humans were present in frequencies similar to those specific for non-self antigens. For the Y chromosome-encoded SMCY antigen, self-specific T cells exhibited only a 3-fold lower average frequency in males versus females and were anergic with respect to peptide activation, although this inhibition could be overcome by a stronger stimulus. We conclude that clonal deletion prunes but does not eliminate self-specific T cells and suggest that to do so would create holes in the repertoire that pathogens could readily exploit. In support of this hypothesis, we detected T cells specific for all 20 amino acid variants at the p5 position of a hepatitis C virus epitope in a random group of blood donors

    Mutating chikungunya virus non‐structural protein produces potent live‐attenuated vaccine candidate

    Get PDF
    Currently, there are no commercially available live‐attenuated vaccines against chikungunya virus (CHIKV). Here, CHIKVs with mutations in non‐structural proteins (nsPs) were investigated for their suitability as attenuated CHIKV vaccines. R532H mutation in nsP1 caused reduced infectivity in mouse tail fibroblasts but an enhanced type‐I IFN response compared to WT‐CHIKV. Adult mice infected with this nsP‐mutant exhibited a mild joint phenotype with low‐level viremia that rapidly cleared. Mechanistically, ingenuity pathway analyses revealed a tilt in the anti‐inflammatory IL‐10 versus pro‐inflammatory IL‐1β and IL‐18 balance during CHIKV nsP‐mutant infection that modified acute antiviral and cell signaling canonical pathways. Challenging CHIKV nsP‐mutant‐infected mice with WT‐CHIKV or the closely related O'nyong‐nyong virus resulted in no detectable viremia, observable joint inflammation, or damage. Challenged mice showed high antibody titers with efficient neutralizing capacity, indicative of immunological memory. Manipulating molecular processes that govern CHIKV replication could lead to plausible vaccine candidates against alphavirus infection

    Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects.

    Get PDF
    BACKGROUND: Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. METHODS: We investigated in vitro and in vivo effects of metformin in humans. RESULTS: Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production. CONCLUSION: Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis
    corecore