97 research outputs found

    The Genetics of Language Acquisition

    Get PDF
    This chapter focuses on the understanding of the role of genetics in language and explores how genetics contribute to language, and shows how new genetic techniques can offer inroads into the molecular basis of language acquisition. It discusses some of the key findings of gene x environment studies and provides a snapshot of the understanding in the field, considering some of the limitations of the type of study design. The chapter describes the field of play in the genetics of language acquisition and explains the heritability of language and the role of family and twin studies in the understanding of language. It also explores the inheritance mechanisms that are implicated in language development. The chapter considers how modern DNA sequencing approaches are revolutionizing the field of language genetics. Heritability studies have provided many key insights into the genetics of both language acquisition and language disorders. Insights into mechanisms can also come from the opposite end of the language ability spectrum

    Recent advances in the genetics of language impairment

    Get PDF
    Specific language impairment (SLI) is defined as an unexpected and persistent impairment in language ability despite adequate opportunity and intelligence and in the absence of any explanatory medical conditions. This condition is highly heritable and affects between 5% and 8% of pre-school children. Over the past few years, investigations have begun to uncover genetic factors that may contribute to susceptibility to language impairment. So far, variants in four specific genes have been associated with spoken language disorders - forkhead box P2 (FOXP2) and contactin-associated protein-like 2 (CNTNAP2) on chromosome7 and calcium-transporting ATPase 2C2 (ATP2C2) and c-MAF inducing protein (CMIP) on chromosome 16. Here, we describe the different ways in which these genes were identified as candidates for language impairment. We discuss how characterization of these genes, and the pathways in which they are involved, may enhance our understanding of language disorders and improve our understanding of the biological foundations of language acquisition

    Peripheral anomalies in USH2A cause central auditory anomalies in a mouse model of Usher syndrome and CAPD

    Get PDF
    Central auditory processing disorder (CAPD) is associated with difficulties hearing and processing acoustic information, as well as subsequent impacts on the development of higher-order cognitive processes (i.e., attention and language). Yet CAPD also lacks clear and consistent diagnostic criteria, with widespread clinical disagreement on this matter. As such, identification of biological markers for CAPD would be useful. A recent genome association study identified a potential CAPD risk gene, USH2A. In a homozygous state, this gene is associated with Usher syndrome type 2 (USH2), a recessive disorder resulting in bilateral, high-frequency hearing loss due to atypical cochlear hair cell development. However, children with heterozygous USH2A mutations have also been found to show unexpected low-frequency hearing loss and reduced early vocabulary, contradicting assumptions that the heterozygous (carrier) state is “phenotype free”. Parallel evidence has confirmed that heterozygous Ush2a mutations in a transgenic mouse model also cause low-frequency hearing loss (Perrino et al., 2020). Importantly, these auditory processing anomalies were still evident after covariance for hearing loss, suggesting a CAPD profile. Since usherin anomalies occur in the peripheral cochlea and not central auditory structures, these findings point to upstream developmental feedback effects of peripheral sensory loss on high-level processing characteristic of CAPD. In this study, we aimed to expand upon the mouse behavioral battery used in Perrino et al. (2020) by evaluating central auditory brain structures, including the superior olivary complex (SOC) and medial geniculate nucleus (MGN), in heterozygous and homozygous Ush2a mice. We found that heterozygous Ush2a mice had significantly larger SOC volumes while homozygous Ush2a had significantly smaller SOC volumes. Heterozygous mutations did not affect the MGN; however, homozygous Ush2a mutations resulted in a significant shift towards more smaller neurons. These findings suggest that alterations in cochlear development due to USH2A variation can secondarily impact the development of brain regions important for auditory processing ability

    The genomic landscape of language disorders: Insights into evolution

    Get PDF
    Studies of severe, monogenic forms of language disorders have revealed important insights into the mechanisms that underpin language development and evolution. It is clear that monogenic mutations in genes such as FOXP2 and CNTNAP2 only account for a small proportion of language disorders seen in children, and the genetic basis of language in modern humans is highly complex and poorly understood. In this review, we examine why we understand so little of the genetic landscape of language disorders, and how the genetic background of an individual greatly affects the way in which a genetic change is expressed. We discuss how the underlying genetics of language disorders has informed our understanding of language evolution, and how recent advances may obtain a clearer picture of language capacity in ancient hominins

    Stage 1 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: protocol for a test of the double hit hypothesis

    Get PDF
    Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. Group averages, however, obscure a wide range of outcomes. Hypothesis: The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. Neuroligin-4 genes are expressed from X and Y chromosomes; they play an important role in synaptic development and have been implicated in neurodevelopment. We predict that the impact of an additional sex chromosome on neurodevelopment will be correlated with common autosomal variants involved in related synaptic functions. We describe here an analysis plan for testing this hypothesis using existing data. The analysis of genotype-phenotype associations will be conducted after this plan is published and peer-reviewed. Methods: Neurodevelopmental data and DNA are available for 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Children from a twin study using the same phenotype measures will form two comparison groups (Ns = 184 and 186). Three indicators of a neurodevelopment disorder phenotype will be used: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Autosomal genes were identified by literature search on the basis of prior association with (a) speech/language/reading phenotypes and (b) synaptic function. Preselected regions of two genes scoring high on both criteria, CNTNAP2 and NRXN1, will be tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. We predict the association with one or both genes will be detectable in children with SCTs and stronger than in the comparison samples

    Candidate gene variant effects on language disorders in Robinson Crusoe Island

    Get PDF
    Robinson Crusoe Island is a geographically and socially isolated settlement located over 600km west of the Port of Valparíso, Chile. An unusually high incidence (30%) of the Chilean equivalent of developmental language disorder (TEL) has been reported in Islander children, with 90% of these affected children found to be direct descendants of a pair of original founder-brothers, therefore strongly suggesting a shared genetic basis. Here we utilise whole-genome sequencing to investigate potential underlying variants in a panel of thirty-four genes known to play a role in language disorders, in seven TEL affected and ten unaffected islanders. We use this targeted approach to look for rare, shared variants that may underlie the diagnosis of TEL in a Mendelian genetic model. We go on to test whether the overall burden of rare variants is enriched in individuals affected by TEL or with Islanders related to the founder-brother lineage. In the absence of explanatory rare variants, we further investigate these candidate genes within a complex model of inheritance, where inheriting a small number of moderate impact common variants may increase susceptibility of developing TEL. We examine if any variants segregate with affection status or with founder-brother-related status, and therefore may increase risk of developing a language disorder. Finally, we perform a pooled, gene-based tests to evaluate relationships between combined variation across candidate genes and TEL affection status. Here we report a comprehensive examination of genes directly implicated in language-related mechanisms to identify ‘low hanging fruit’ of causative monogenic Mendelian variants, and complex association model of increased susceptibility in developmental language disorder found on Robinson Crusoe Island

    Family aggregation of language impairment in an isolated Chilean population from the Robinson Crusoe Island

    Get PDF
    Background: It has been reported that the inhabitants of the Chilean Robinson Crusoe Island have an increased frequency of Specific Language Impairment (SLI) or Developmental Language Disorder (DLD). Aims: In this paper, we aim to explore the familial aggregation of DLD in this community. Methods & procedures: We assessed the frequency of DLD amongst colonial children between the ages of 3 years and 8 years, 11 months (50 individuals from 45 nuclear families). Familial aggregation rates of language-disorder were calculated by assessing all available first-degree relatives (n= 107, 77 parents, 25 siblings, 5 half-siblings) of the probands. Outcomes & results: We found that 71% of the child population performed significantly below expected in measures of phonological production or expressive and receptive morphology. The majority of these children presented with severe expressive and/or receptive language difficulties. A quarter of language disordered probands primarily had phonological difficulties. Family members of affected probands, experienced a higher risk of language-disorder than those of typically-developing probands. This increased risk was apparent regardless of nonverbal IQ. Conclusions & implications: Our study substantiates the existence of a familial form of speech and language disorder on the Robinson Crusoe Island. Furthermore, we find that the familiality is stable regardless of non-verbal IQ, supporting the recent movement to reduce the importance of nonverbal IQ criterion in DLD diagnoses

    The genetic and molecular basis of developmental language disorder: A review

    Get PDF
    Language disorders are highly heritable and are influenced by complex interactions between genetic and environmental factors. Despite more than twenty years of research, we still lack critical understanding of the biological underpinnings of language. This review provides an overview of the genetic landscape of developmental language disorders (DLD), with an emphasis on the importance of defining the specific features (the phenotype) of DLD to inform gene discovery. We review the specific phenotype of DLD in the genetic literature, and the influence of historic variation in diagnostic inclusion criteria on researchers’ ability to compare and replicate genotype-phenotype studies. This review provides an overview of the recently identified gene pathways in populations with DLD and explores current state-of-the-art approaches to genetic analysis based on the hypothesized architecture of DLD. We will show how recent global efforts to unify diagnostic criteria have vastly increased sample size and allow for large multi-cohort metanalyses, leading the identification of a growing number of contributory loci. We emphasize the important role of estimating the genetic architecture of DLD to decipher underlying genetic associations. Finally, we explore the potential for epigenetics and environmental interactions to further unravel the biological basis of language disorders.

    The effects of prenatal smoke exposure on language development- a systematic review

    Get PDF
    The negative health effects cigarette smoking during pregnancy (SDP) on the foetus are well known. Despite previous reports of poor cognitive performance in offspring exposed to SDP, few studies specifically consider language outcomes according to maternal smoking. In this study, we systematically review the literature to assess the relationships between SDP and child language. Of the 14 studies reviewed, 13 (93%) reported significant associations between maternal smoking or exposure and language outcomes. Despite this consistent association, only 8 of the 13 studies reporting associations (62%) concluded direct relationships between exposure and outcome. The remaining studies suggested that the relationship between smoking and language could be explained by factors such as maternal IQ, socioeconomic status (SES) and parental age. Future studies should apply careful study designs allowing for confounding factors across child, parental, environmental and genetic influences. Our review suggests that smoking cessation is likely to positively affect child language outcomes
    • 

    corecore