7,201 research outputs found

    Advanced software techniques for data management systems. Volume 3: Programming language characteristics and comparison reference

    Get PDF
    A comparative evaluation was made of eight higher order languages of general interest in the aerospace field: PL/1; HAL; JOVIAL/J3; SPL/J6; CLASP; ALGOL 60; FORTRAN 4; and MAC360. A summary of the functional requirements for a language for general use in manned aerodynamic applications is presented. The evaluation supplies background material to be used in assessing the worth of each language for some particular application

    Vertebrate responses to human land use are influenced by their proximity to climatic tolerance limits

    Get PDF
    Aim Land‐use change leads to local climatic changes, which can induce shifts in community composition. Indeed, human‐altered land uses favour species able to tolerate greater temperature and precipitation extremes. However, environmental changes do not impact species uniformly across their distributions, and most research exploring the impacts of climatic changes driven by land use has not considered potential within‐range variation. We explored whether a population's climatic position (the difference between species' thermal and precipitation tolerance limits and the environmental conditions a population experiences) influences their relative abundance across land‐use types. Location Global. Methods Using a global dataset of terrestrial vertebrate species and estimating their realized climatic tolerance limits, we analysed how the abundance of species within human‐altered habitats relative to that in natural habitats varied across different climatic positions (controlling for proximity to geographic range edge). Results A population's thermal position strongly influenced abundance within human‐altered land uses (e.g. agriculture). Where temperature extremes were closer to species' thermal limits, population abundances were lower in human‐altered land uses (relative to natural habitat) compared to areas further from these limits. These effects were generally stronger at tropical compared to temperate latitudes. In contrast, the influences of precipitation position were more complex and often differed between land uses and geographic zones. Mapping the outcome of models revealed strong spatial variation in the potential severity of decline for vertebrate populations following conversion from natural habitat to cropland or pasture, due to their climatic position. Main conclusions We highlight within‐range variation in species' responses to land use, driven (at least partly), by differences in climatic position. Accounting for spatial variation in responses to environmental changes is critical when predicting population vulnerability, producing successful conservation plans, and exploring how biodiversity may be impacted by future land‐use and climate change interactions

    Local climatic changes affect biodiversity responses to land use: a review

    Get PDF
    Aim Climate and land‐use change, the greatest pressures on biodiversity, can directly influence each other. One key case is the impact land‐use change has on local climatic conditions: human‐altered areas are often warmer and drier than natural habitats. This can have multiple impacts on biodiversity and is a rapidly developing field of research. Here, we summarize the current state of understanding on the impact that local climatic changes have on biodiversity responses to land‐use change, in particular looking at whether human‐altered land uses favour species with certain climatic niches. Location Global. Methods We review studies that have identified links between species' climatic niches and the habitats/land‐use types they inhabit. We also critically discuss the methods used to explore this topic (such as the estimation of fundamental vs. realized climatic niches), identify key knowledge gaps by reference to related macroecological literature and make suggestions for further work. Results Assemblages of vertebrate and invertebrate species in numerous human‐dominated land uses have been found to have higher proportions of individuals affiliated with higher temperatures and lower precipitation levels than assemblages within natural habitats. However, uncertainty surrounds the mechanisms that underlie these observed differences between communities across land‐use types, and it remains unexplored as to whether these trends differ geographically or taxonomically. Main conclusion Shifts are being observed within human‐altered land uses to communities with, on average, warmer and drier climatic niches. A better understanding of the effects of local climatic changes associated with land‐use change will enhance our ability to predict future impacts on biodiversity, identify the species most at risk from interactions between climate and land‐use change and set up suitable management and conservation plans

    Assessing the effects of land use on biodiversity in the world's drylands and Mediterranean environments

    Get PDF
    Biodiversity models make an important contribution to our understanding of global biodiversity changes. The effects of different land uses vary across ecosystem types, yet most broad-scale models have failed to account for this variation. The effects of land use may be different in systems characterized by low water availability because of the unusual conditions within these systems. Drylands are expanding, currently occupying over 40% of the terrestrial land, while Mediterranean systems are highly endangered biodiversity hotspots. However, the impact of land use on biodiversity in these biomes is yet to be assessed. Using a database of local biodiversity surveys, we assess the effects of land use on biodiversity in the world’s drylands and Mediterranean ecosystems. We compare the average species richness, total abundance, species diversity, ecological dominance, endemism rates, and compositional turnover across different land uses. In drylands, there was a strong turnover in species composition in disturbed land uses compared with undisturbed natural habitat (primary vegetation), but other measures of biodiversity did not respond significantly. However, it is important to note that the sample size for drylands was very low, a gap which should be filled promptly. Mediterranean environments showed a very high sensitivity of biodiversity to land uses. In this biome, even habitat recovering after past disturbance (secondary vegetation) had substantially reduced biodiversity and altered community composition compared with primary vegetation. In an effort to maintain original biodiversity and the ecosystem functions it supports within Mediterranean biomes, conservation measures should therefore prioritize the preservation of remaining primary vegetation

    Text‐analysis reveals taxonomic and geographic disparities in animal pollination literature

    Get PDF
    Ecological systematic reviews and meta‐analyses have significantly increased our understanding of global biodiversity decline. However, for some ecological groups, incomplete and biased datasets have hindered our ability to construct robust, predictive models. One such group consists of the animal pollinators. Approximately 88% of wild plant species are thought to be pollinated by animals, with an estimated annual value of $230–410 billion dollars. Here we apply text‐analysis to quantify the taxonomic and geographical distribution of the animal pollinator literature, both temporally and spatially. We show that the publication of pollinator literature increased rapidly in the 1980s and 1990s. Taxonomically, we show that the distribution of pollinator literature is concentrated in the honey bees (Apis) and bumble bees (Bombus), and geographically in North America and Europe. At least 25% of pollination‐related abstracts mention a species of honey bee and at least 20% a species of bumble bee, and approximately 46% of abstracts are focussed on either North America (32%) or Europe (14%). Although these results indicate strong taxonomic and geographic biases in the pollinator literature, a large number of studies outside North America and Europe do exist. We then discuss how text‐analysis could be used to shorten the literature search for ecological systematic reviews and meta‐analyses, and to address more applied questions related to pollinator biodiversity, such as the identification of likely interacting plant–pollinator pairs and the number of pollinating species

    New approaches for estimating risk from exposure to diethylstilbestrol.

    Get PDF
    A subgroup from a National Institute of Environmental Health Sciences, workshop concerned with characterizing the effects of endocrine disruptors on human health at environmental exposure levels considered the question, If diethylstilbestrol (DES) were introduced into the market for human use today and likely to result in low-dose exposure of the human fetus, what would be required to assess risk? On the basis of an analysis of the quality of data on human DES exposure, the critical times and doses for inducing genital tract malformations and cancer must be determined. This would be facilitated through analysis of the ontogeny of estrogen receptor expression in the developing human genital tract. Models of low-dose estrogenic effects will have to be developed for human and rodent genital tract development. Mouse models offer many advantages over other potential animal models because of the wealth of the earlier literature, the availability of sensitive end points, the availability of mutant lines, and the possibility of generating genetically engineered model systems. Through multidisciplinary approaches, it should be possible to elucidate the cellular and molecular mechanisms of endocrine disruption elicited by estrogens during development and facilitate an assessment of risk to humans

    Intensive human land uses negatively affect vertebrate functional diversity

    Get PDF
    Land-use change is the leading driver of global biodiversity loss thus characterising its impacts on the functional structure of ecological communities is an urgent challenge. Using a database describing vertebrate assemblages in different land uses, we assess how the type and intensity of land use affect the functional diversity of vertebrates globally. We find that human land uses alter local functional structure by driving declines in functional diversity, with the strongest effects in the most disturbed land uses (intensely used urban sites, cropland and pastures), and among amphibians and birds. Both tropical and temperate areas experience important functional losses, which are only partially offset by functional gains. Tropical assemblages are more likely to show decreases in functional diversity that exceed those expected from species loss alone. Our results indicate that land-use change non-randomly reshapes the functional structure of vertebrate assemblages, raising concerns about the continuation of ecological processes sustained by vertebrates

    Global gaps in trait data for terrestrial vertebrates

    Get PDF
    AIM: Trait data are increasingly being used in studies investigating the impacts of global changes on the structure and functioning of ecological communities. Despite a growing number of trait data collations for terrestrial vertebrates, there is to date no global assessment of the gaps and biases the data present. Here, we assess whether terrestrial vertebrate trait data are taxonomically, spatially and phylogenetically biased. LOCATION: Global. TIME PERIOD: Present. MAJOR TAXA STUDIED: Terrestrial vertebrates. METHODS: We compile seven ecological traits and quantify coverage as the proportion of species for which an estimate is available. For a species, we define completeness as the proportion of non‐missing values across traits. We assess whether coverage and completeness differ across classes and examine phylogenetic biases in trait data. To investigate spatial biases, we test whether wider‐ranging species have more complete trait data than narrow‐ranging species. Additionally, we test whether species‐rich regions, which are of most concern for conservation, are less well sampled than species‐poor regions. RESULTS: Mammals and birds are well sampled even in species‐rich regions. For reptiles and amphibians (herptiles), only body size presents a high coverage (>80%), in addition to habitat‐related variables (amphibians). Herptiles are poorly sampled for other traits. The shortfalls are particularly acute in some species‐rich regions and for certain clades. Across all classes, geographically rarer species have less complete trait information. MAIN CONCLUSIONS: Trait information is less available on average in some of the most diverse areas and in geographically rarer species, both of which crucial for biodiversity conservation. Gaps in trait data might impede our ability to conduct large‐scale analyses, whereas biases can impact the validity of extrapolations. A short‐term solution to the problem is to estimate missing trait data using imputation techniques, whereas a longer‐term and more robust filling of existing gaps requires continued data‐collection efforts

    Human-dominated land uses favour species affiliated with more extreme climates, especially in the tropics

    Get PDF
    Rapid human population growth has driven conversion of land for uses such as agriculture, transportation and buildings. The removal of natural vegetation changes local climate, with human‐dominated land uses often warmer and drier than natural habitats. Yet, it remains an open question whether land‐use changes influence the composition of ecological assemblages in a direction consistent with the mechanism of local climatic change. Here, we used a global database of terrestrial vertebrates (mammals, birds, reptiles and amphibians) to test whether human‐dominated land uses systematically favour species with distinctive realised climatic niches. We 1) explored the responses of community‐average temperature and precipitation niches to different types of land use, 2) quantified the abundances of species with distinctive climatic niches across land uses and 3) tested for differences in emergent patterns in communities from tropical versus temperate latitudes. We found that, in comparison to species from undisturbed natural habitats, the average animal found in human‐altered habitats lives in areas with higher maximum and lower minimum temperatures and higher maximum and lower minimum precipitation levels. We further found that tropical assemblages diverged more strongly than temperate assemblages between natural and human‐altered habitats, possibly because tropical species are more sensitive to climatic conditions. These results strongly implicate the role of land‐use change in favouring species affiliated with more extreme climatic conditions, thus systematically reshaping the composition of terrestrial biological assemblages. Our findings have the potential to inform species' vulnerability assessments and highlight the importance of preserving local climate refugia
    • 

    corecore