204 research outputs found
Multianalytical Assessment of Armour Paints—The Ageing Characteristics of Historic Drying Oil Varnish Paints for Protection of Steel and Iron Surfaces in Sweden
The characteristics of armour paints, historically used to protect ferrous industrial heritage, are explored. Amour paints contain lamellar and highly reflexive pigments of micaceous iron oxide (MIO) and metallic, leafing aluminium, bound in linseed oil and linseed oil–tung oil mixtures, on an inhibitive and soap-forming linseed oil primer (red lead). It is the first study of the binding media used for historical armour paints and investigates the chemical and physical ageing of armour paints using a multianalytical approach. Naturally aged examples are compared to accelerated aged replica armour paint, and to historical paints. The ageing and degradation reactions are assessed by complementary GC–MS and FTIR, together with measurements of wettability, hardness and surface colour. The historical paint formulations include linseed oils and alkyd binders. The results confirm that the leafing effect of aluminium pigments results in only a small concentration of binder at the surface: the paints studied reflect light and form a strong chemical and physical barrier. Linseed oils and tung oil mixtures have been proven to be suitable for the production of armour paints, but the evaluation of ageing and assessment of physical changes will require further investigation
Multi-Analytical Assessment of Bodied Drying Oil Varnishes and Their Use as Binders in Armour Paints
The characteristics of commercially available refined and bodied linseed and tung oils, used as binders in the production of armour paints after historic recipes, are explored. Employed as anticorrosive paints mainly from the 1920s to 1960s, armour paints are greener alternatives that can be used for protection in industrial heritage conservation. Using a multi-analytical approach, chemical and physical properties of the fresh oils and solid films before and after accelerated ageing (ISO 16474-2:2013) were investigated to better understand which features are beneficial for the technical function of armour paints. Tests included measurements of density, the refractive index, insoluble impurities, alkaline impurities, the water content, the iodine value, the saponification value, the free fatty acid concentration, the acid value, the peroxide value and colour (Lovibond) and cold tests. The characterisation of the fresh oils using molecular analysis with FTIR and GC-MS revealed the complexity of the commercial formulations, for which additions of semi- and non-drying oils were detected. The results show that organic paint binders follow complex chemical reactions (such as oxidation and decrease of unsaturation being variable or swelling following water-immersion tests), with implications for their suitability for use in protectio
Dual wavelength excitation for the time-resolved photoluminescence imaging of painted ancient Egyptian objects
Background: The scientific imaging of works of art is crucial for the assessment of the presence and distribution of pigments and other materials on surfaces. It is known that some ancient pigments are luminescent: these include pink red-lakes and the blue and purple pigments Egyptian Blue (CaCuSi4O10), Han blue (BaCuSi4O10) and Han purple (BaCuSi2O6). Indeed, the unique near-infrared luminescence emission of Egyptian blue allows the imaging of its distribution on surfaces. Results: We focus on the imaging of the time-resolved photoluminescence of ancient Egyptian objects in the Burri Collection from the Civic Museum of Crema and of the Cremasco (Italy). Time-resolved photoluminescence images have been acquired using excitation at 355 nm for detecting the ns-emission of red lakes and binding media; by employing 532 nm excitation Egyptian blue is probed, and the spatial distribution of its long-lived microsecond emission is imaged. For the first time we provide data on the photoluminescence lifetime of Egyptian blue directly from objects. Moreover, we demonstrate that the use of a pulsed laser emitting at two different wavelengths increases the effectiveness of the lifetime imaging technique for mapping the presence of emissions from pigments on painted surfaces. Laser-induced luminescence spectra from different areas of the objects and traditional digital imaging, using led-based lamps, long pass filters and a commercial photographic camera, complement the results from photoluminescence lifetime imaging. We demonstrate the versatility of a new instrumental setup, capable of recording decay emission kinetics with lifetimes from nanosecond to microseconds. Conclusions: While the combined wavelength approach for the imaging of emissions from different materials has been demonstrated for the study of ancient Egyptian pigments (both organic and inorganic), the method could be extended to the analysis of modern pigments and paintings
A Critical Review on the Analysis of Metal Soaps in Oil Paintings
Up to 70 % of the oil paintings conserved in collections present metal soaps, which result from the chemical reaction between metal ions present in the painted layers and free fatty acids from the lipidic binders. In recent decades, conservators and conservation scientists have been systematically identifying various and frequent conservation problems that can be linked to the formation of metal soaps. It is also increasingly recognized that metal soap formation may not compromise the integrity of paint so there is a need for careful assessment of the implications of metal soaps for conservation. This review aims to critically assess scientific literature related to commonly adopted analytical techniques for the analysis of metal soaps in oil paintings. A comparison of different analytical methods is provided, highlighting advantages associated with each, as well as limitations identified through the analysis of reference materials and applications to the analysis of samples from historical paintings
A photoluminescence study of the changes induced in the zinc white pigment by formation of zinc complexes
It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments
Time-resolved photoluminescence microscopy for the analysis of semiconductor-based paint layers
In conservation, science semiconductors occur as the constituent matter of the so-called semiconductor pigments, produced following the Industrial Revolution and extensively used by modern painters. With recent research highlighting the occurrence of various degradation phenomena in semiconductor paints, it is clear that their detection by conventional optical fluorescence imaging and microscopy is limited by the complexity of historical painting materials. Here, we illustrate and prove the capabilities of time-resolved photoluminescence (TRPL) microscopy, equipped with both spectral and lifetime sensitivity at timescales ranging from nanoseconds to hundreds of microseconds, for the analysis of cross-sections of paint layers made of luminescent semiconductor pigments. The method is sensitive to heterogeneities within micro-samples and provides valuable information for the interpretation of the nature of the emissions in samples. A case study is presented on micro samples from a painting by Henri Matisse and serves to demonstrate how TRPL can be used to identify the semiconductor pigments zinc white and cadmium yellow, and to inform future investigations of the degradation of a cadmium yellow paint
Time-resolved photoluminescence spectroscopy and imaging: New approaches to the analysis of cultural heritage and its degradation
Applications of time-resolved photoluminescence spectroscopy (TRPL) and fluorescence lifetime imaging (FLIM) to the analysis of cultural heritage are presented. Examples range from historic wall paintings and stone sculptures to 20th century iconic design objects. A detailed description of the instrumentation developed and employed for analysis in the laboratory or in situ is given. Both instruments rely on a pulsed laser source coupled to a gated detection system, but differ in the type of information they provide. Applications of FLIM to the analysis of model samples and for the in-situ monitoring of works of art range from the analysis of organic materials and pigments in wall paintings, the detection of trace organic substances on stone sculptures, to the mapping of luminescence in late 19th century paintings. TRPL and FLIM are employed as sensors for the detection of the degradation of design objects made in plastic. Applications and avenues for future research are suggested
Fecal Microbiota, Lactic Acid and Short Chain Fatty Levels of Infants Following Rotavirus Infection Revealed by Illumina Miseq High-Throughput Sequencing and HPLC Method
Background: Rotavirus (RV) is one of the major causes of acute gastroenteritis in infants. It is indispensable to demonstrate the relationship between the diversity and richness of gut microbiota and RV infection using more accurate and effective technology. Objectives: To investigate the differences in fecal microbiota, lactic acid, and short-chain fatty acids (SCFAs) levels between rotaviral-induced diarrhea (RD) infants and healthy (H) infants. Methods: The infants comprised of 25 infants aged few days to six months, who were in good health (n = 12) or diagnosed with rotavirus (n = 13). Fecal matter was analyzed with Illumina Miseq high-throughput sequencing technique targeting the 16s rRNA gene V3-V4 region. Lactic acids and SCFAs were measured by the high-performance liquid chromatography (HPLC) technique. Results: Compared to H infants, the fecal samples in RD infants had lower Shannon diversity index and the bacteria richness (P < 0.05). A higher proportion of Proteobacteria, Enterobacteriaceae and Klebsiella, and lower abundances of Actinobacteria and Knoellia (P < 0.05) were detected in fecal samples of RD infants. The total SCFAs content of fecal samples showed no distinction between RD and H infants, yet lower levels of lactic acid were observed in fecal samples of RD infants. Conclusions: Rotaviral infection in infants led to an alteration of fecal microbiota and lactic acid concentration compared with healthy infants. Fecal microbiota and metabolite may advance the understanding and treatment of RD
- …