19 research outputs found

    Identification of Cry48Aa/Cry49Aa toxin ligands in the midgut of Culex quinquefasciatus larvae

    Get PDF
    A binary mosquitocidal toxin composed of a three-domain Cry-like toxin (Cry48Aa) and a binary-like toxin (Cry49Aa) was identified in Lysinibacillus sphaericus. Cry48Aa/Cry49Aa has action on Culex quinquefasciatus larvae, in particular, to those that are resistant to the Bin Binary toxin, which is the major insecticidal factor from L. sphaericus-based biolarvicides, indicating that Cry48Aa/Cry49Aa interacts with distinct target sites in the midgut and can overcome Bin toxin resistance. This study aimed to identify Cry48Aa/Cry49Aa ligands in C. quinquefasciatus midgut through binding assays and mass spectrometry. Several proteins, mostly from 50 to 120 kDa, bound to the Cry48Aa/Cry49Aa toxin were revealed by toxin overlay and pull-down assays. These proteins were identified against the C. quinquefasciatus genome and after analysis a set of 49 proteins were selected which includes midgut bound proteins such as aminopeptidases, amylases, alkaline phosphatases in addition to molecules from other classes that can be potentially involved in this toxin's mode of action. Among these, some proteins are orthologs of Cry receptors previously identified in mosquito larvae, as candidate receptors for Cry48Aa/Cry49Aa toxin. Further investigation is needed to evaluate the specificity of their interactions and their possible role as receptors

    Insecticide susceptibility of Aedes albopictus and Ae. aegypti from Brazil and the Swiss-Italian border region

    Get PDF
    Aedes aegypti and Ae. albopictus are two highly invasive mosquito species, both vectors of several viruses, including dengue, chikungunya and Zika. While Ae. aegypti is the primary vector in the tropics and sub-tropics, Ae. albopictus is increasingly under the public health watch as it has been implicated in arbovirus-transmission in more temperate regions, including continental Europe. Vector control using insecticides is the pillar of most control programmes; hence development of insecticide resistance is of great concern. As part of a Brazilian-Swiss Joint Research Programme we set out to assess whether there are any signs of existing or incipient insecticide resistance primarily against the larvicide Bacillus thuringiensis svar. israelensis (Bti), but also against currently applied and potentially alternative insecticides in our areas, Recife (Brazil) and the Swiss-Italian border region.; Following World Health Organization guidelines, dose-response curves for a range of insecticides were established for both colonized and field caught Ae. aegypti and Ae. albopictus. The larvicides included Bti, two of its toxins, Cry11Aa and Cry4Ba, Lysinibacillus sphaericus, Vectomax CG®, a formulated combination of Bti and L. sphaericus, and diflubenzuron. In addition to the larvicides, the Swiss-Italian Ae. albopictus populations were also tested against five adulticides (bendiocarb, dichlorodiphenyltrichloroethane, malathion, permethrin and λ-cyhalothrin).; Showing a similar dose-response, all mosquito populations were fully susceptible to the larvicides tested and, in particular, to Bti which is currently used both in Brazil and Switzerland. In addition, there were no signs of incipient resistance against Bti as larvae were equally susceptible to the individual toxins, Cry11Aa and Cry4Ba. The field-caught Swiss-Italian populations were susceptible to the adulticides tested but DDT mortality rates showed signs of reduced susceptibility.; The insecticides currently used for mosquito control in Switzerland and Brazil are still effective against the target populations. The present study provides an important reference as relatively few insecticide susceptibility surveys have been carried out with Ae. albopictus

    Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents

    No full text
    Abstract Background Bacillus thuringiensis svar. israelensis (Bti) is an effective and safe biolarvicide to control Aedes aegypti. Its mode of action based on four protoxins disfavors resistance; however, control in endemic areas that display high mosquito infestation throughout the year requires continuous larvicide applications, which imposes a strong selection pressure. Therefore, this study aimed to investigate the effects of an intensive Bti exposure on an Ae. aegypti strain (RecBti), regarding its susceptibility to Bti and two of its protoxins tested individually, to other control agents temephos and diflubenzuron, and its profile of detoxifying enzymes. Methods The RecBti strain was established using a large egg sample (10,000) from Recife city (Brazil) and more than 290,000 larvae were subjected to Bti throughout 30 generations. Larvae susceptibility to larvicides and the activity of detoxifying enzymes were determined by bioassays and catalytic assays, respectively. The Rockefeller strain was the reference used for these evaluations. Results Bti exposure yielded an average of 74% mortality at each generation. Larvae assessed in seven time points throughout the 30 generations were susceptible to Bti crystal (resistance ratio RR ≤ 2.8) and to its individual toxins Cry11Aa and Cry4Ba (RR ≤ 4.1). Early signs of altered susceptibility to Cry11Aa were detected in the last evaluations, suggesting that this toxin was a marker of the selection pressure imposed. RecBti larvae were also susceptible (RR ≤ 1.6) to the other control agents, temephos and diflubenzuron. The activity of the detoxifying enzymes α- and β-esterases, glutathione-S-transferases and mixed-function oxidases was classified as unaltered in larvae from two generations (F19 and F25), except for a β-esterases increase in F25. Conclusions Prolonged exposure of Ae. aegypti larvae to Bti did not evolve into resistance to the crystal, and no cross-resistance with temephos and diflubenzuron were recorded, which supports their sustainable use with Bti for integrated control practices. The unaltered activity of most detoxifying enzymes suggests that they might not play a major role in the metabolism of Bti toxins, therefore resistance by this mechanism is unlikely to occur. This study also highlights the need to establish suitable criteria to classify the status of larval susceptibility/resistance

    A new allele conferring resistance to Lysinibacillus sphaericus is detected in low frequency in Culex quinquefasciatus field populations

    No full text
    Submitted by Adagilson Silva ([email protected]) on 2017-09-04T19:54:16Z No. of bitstreams: 1 26576515 2016 pai-ide.oa.pdf: 602511 bytes, checksum: a3bdfb10f98627983fa539648d310799 (MD5)Approved for entry into archive by Adagilson Silva ([email protected]) on 2017-09-05T18:53:50Z (GMT) No. of bitstreams: 1 26576515 2016 pai-ide.oa.pdf: 602511 bytes, checksum: a3bdfb10f98627983fa539648d310799 (MD5)Made available in DSpace on 2017-09-05T18:53:50Z (GMT). No. of bitstreams: 1 26576515 2016 pai-ide.oa.pdf: 602511 bytes, checksum: a3bdfb10f98627983fa539648d310799 (MD5) Previous issue date: 2016-02-04Fundação Oswaldo Cruz. Instituto Aggeu MagalhĂŁes. Recife, PE, BrasilThe Cqm1 α-glucosidase of Culex quinquefasciatus larvae acts as the midgut receptor for the binary toxin of the biolarvicide Lysinibacillus sphaericus. Mutations within the cqm1 gene can code for aberrant polypeptides that can no longer be properly expressed or bind to the toxin, leading to insect resistance. The cqm1 REC and cqm1 REC-2 alleles were identified in a laboratory selected colony and both displayed mutations that lead to equivalent phenotypes of refractoriness to L. sphaericus. cqm1 REC was first identified as the major resistance allele in this colony but it was subsequently replaced by cqm1 REC-2 , suggesting the better adaptive features of the second allele. The major aim of this study was to evaluate the occurrence of cqm1 REC-2 and track its origin in field populations where cqm1 REC was previously identified

    Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance

    No full text
    Larvicides based on the bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus sphaericus are effective and environmentally safe compounds for the control of dipteran insects of medical importance. They produce crystals that display specific and potent insecticidal activity against larvae. Bti crystals are composed of multiple protoxins: three from the three-domain Cry type family, which bind to different cell receptors in the midgut, and one cytolytic (Cyt1Aa) protoxin that can insert itself into the cell membrane and act as surrogate receptor of the Cry toxins. Together, those toxins display a complex mode of action that shows a low risk of resistance selection. L. sphaericus crystals contain one major binary toxin that display an outstanding persistence in field conditions, which is superior to Bti. However, the action of the Bin toxin based on its interaction with a single receptor is vulnerable for resistance selection in insects. In this review we present the most recent data on the mode of action and synergism of these toxins, resistance issues, and examples of their use worldwide. Data reported in recent years improved our understanding of the mechanism of action of these toxins, showed that their combined use can enhance their activity and counteract resistance, and reinforced their relevance for mosquito control programs in the future years

    In vivo nanoscale analysis of the dynamic synergistic interaction of Bacillus thuringiensis Cry11Aa and Cyt1Aa toxins in Aedes aegypti.

    No full text
    The insecticidal Cry11Aa and Cyt1Aa proteins are produced by Bacillus thuringiensis as crystal inclusions. They work synergistically inducing high toxicity against mosquito larvae. It was proposed that these crystal inclusions are rapidly solubilized and activated in the gut lumen, followed by pore formation in midgut cells killing the larvae. In addition, Cyt1Aa functions as a Cry11Aa binding receptor, inducing Cry11Aa oligomerization and membrane insertion. Here, we used fluorescent labeled crystals, protoxins or activated toxins for in vivo localization at nano-scale resolution. We show that after larvae were fed solubilized proteins, these proteins were not accumulated inside the gut and larvae were not killed. In contrast, if larvae were fed soluble non-toxic mutant proteins, these proteins were found inside the gut bound to gut-microvilli. Only feeding with crystal inclusions resulted in high larval mortality, suggesting that they have a role for an optimal intoxication process. At the macroscopic level, Cry11Aa completely degraded the gastric caeca structure and, in the presence of Cyt1Aa, this effect was observed at lower toxin-concentrations and at shorter periods. The labeled Cry11Aa crystal protein, after midgut processing, binds to the gastric caeca and posterior midgut regions, and also to anterior and medium regions where it is internalized in ordered "net like" structures, leading finally to cell break down. During synergism both Cry11Aa and Cyt1Aa toxins showed a dynamic layered array at the surface of apical microvilli, where Cry11Aa is localized in the lower layer closer to the cell cytoplasm, and Cyt1Aa is layered over Cry11Aa. This array depends on the pore formation activity of Cry11Aa, since the non-toxic mutant Cry11Aa-E97A, which is unable to oligomerize, inverted this array. Internalization of Cry11Aa was also observed during synergism. These data indicate that the mechanism of action of Cry11Aa is more complex than previously anticipated, and may involve additional steps besides pore-formation activity

    Cytopathological Effects of Bacillus sphaericus Cry48Aa/Cry49Aa Toxin on Binary Toxin-Susceptible and -Resistant Culex quinquefasciatus Larvaeâ–ż

    No full text
    The Cry48Aa/Cry49Aa mosquitocidal two-component toxin was recently characterized from Bacillus sphaericus strain IAB59 and is uniquely composed of a three-domain Cry protein toxin (Cry48Aa) and a binary (Bin) toxin-like protein (Cry49Aa). Its mode of action has not been elucidated, but a remarkable feature of this protein is the high toxicity against species from the Culex complex, besides its capacity to overcome Culex resistance to the Bin toxin, the major insecticidal factor in B. sphaericus-based larvicides. The goal of this work was to investigate the ultrastructural effects of Cry48Aa/Cry49Aa on midgut cells of Bin-toxin-susceptible and -resistant Culex quinquefasciatus larvae. The major cytopathological effects observed after Cry48Aa/Cry49Aa treatment were intense mitochondrial vacuolation, breakdown of endoplasmic reticulum, production of cytoplasmic vacuoles, and microvillus disruption. These effects were similar in Bin-toxin-susceptible and -resistant larvae and demonstrated that Cry48Aa/Cry49Aa toxin interacts with and displays toxic effects on cells lacking receptors for the Bin toxin, while B. sphaericus IAB59-resistant larvae did not show mortality after treatment with Cry48Aa/Cry49Aa toxin. The cytopathological alterations in Bin-toxin-resistant larvae provoked by Cry48Aa/Cry49Aa treatment were similar to those observed when larvae were exposed to a synergistic mixture of Bin/Cry11Aa toxins. Such effects seemed to result from a combined action of Cry-like and Bin-like toxins. The complex effects caused by Cry48Aa/Cry49Aa provide evidence for the potential of these toxins as active ingredients of a new generation of biolarvicides that conjugate insecticidal factors with distinct sites of action, in order to manage mosquito resistance
    corecore