399 research outputs found

    Effect of exchange electron-electron interaction on conductivity of InGaAs single and double quantum wells in ballistic regime

    Full text link
    We report an experimental study of quantum conductivity corrections for two-dimensional electron gas in a GaAs/InGaAs/GaAs single and double quantum wells in a wide temperature range (1.8-100) K. We perform a comparison of our experimental data for the longitudinal conductivity at zero magnetic field to the theory of interaction-induced corrections to th transport coefficients. In the temperature range from 10 K up to (45-60) K, wich covers the ballistic interaction regimes for our samples, a rather good agreement between the theory and our experimental results has been found

    Doping effect on the evolution of the pairing symmetry in n-type superconductor near antiferromagnetic phase boundary

    Get PDF
    We present the investigation results of the in-plane \{rho}(T) resistivity tensor at the temperature range 0.4-40 K in magnetic fields up to 90kOe (H||c, J||ab) for electron-doped Nd{2-x}Ce{x}CuO{4+{\delta}} with different degree of disorder near antiferromagnetic - superconducting phase boundary. We have experimentally found that for optimally doped compound both the upper critical field slope and the critical temperature decrease with increasing of the disorder parameter (d-wave pairing) while in the case of the underdoped system the critical temperature remains constant and (dHc2/dT)|Tc increases with increasing of the disorder (s-wave pairing). These features suggest a possible implementation of the complex mixture state as the (s+id)-pairing.Comment: 9 pages, 2 figure

    Temperature dependence of quantum lifetime in n-InGaAs/GaAs structures with strongly coupled double quantum wells

    Full text link
    Longitudinal ρxx(B) and Hall ρxy(B) magnetoresistances are experimentally investigated as a function of in-plane and transverse magnetic fields in n-InGaAs/GaAs nanostructures with strongly-coupled double quantum wells in the temperature range T = 1.8-70 K and magnetic fields B = 0-9.0 T. Experimental data on the temperature dependence of quantum lifetime in diffusive (kBT/τtr ≪ 1) and ballistic (kBT/τtr ≫ 1) regimes are reported. It has been found that in the ballistic regime in the temperature range where kBT/EF < 0.1, the observed quadratic temperature dependence of quantum lifetime is determined by inelastic electron-electron scattering. However, the temperature dependence of quantum lifetime cannot be quantitatively described by the existing theories in the whole temperature range. © 2013 American Institute of Physics
    corecore