364 research outputs found

    Factors influencing overall survival rates for patients with pineocytoma

    Get PDF
    Given its rarity, appropriate treatment for pineocytoma remains variable. As the literature primarily contains case reports or studies involving a small series of patients, prognostic factors following treatment of pineocytoma remain unclear. We therefore compiled a systematic review of the literature concerning post-treatment outcomes for pineocytoma to better determine factors associated with overall survival among patients with pineocytoma. We performed a comprehensive search of the published English language literature to identify studies containing outcome data for patients undergoing treatment for pineocytoma. Kaplan–Meier analysis was utilized to determine overall survival rates. Our systematic review identified 168 total patients reported in 64 articles. Among these patients, 21% underwent biopsy, 38% underwent subtotal resection, 42% underwent gross total resection, and 29% underwent radiation therapy, either as mono- or adjuvant therapy. The 1 and 5 year overall survival rates for patients receiving gross total resection versus subtotal resection plus radiotherapy were 91 versus 88%, and 84 versus 17%, respectively. When compared to subtotal resection alone, subtotal resection plus radiation therapy did not offer a significant improvement in overall survival. Gross total resection is the most appropriate treatment for pineocytoma. The potential benefit of conventional radiotherapy for the treatment of these lesions is unproven, and little evidence supports its use at present

    A Unique Carrier for Delivery of Therapeutic Compounds beyond the Blood-Brain Barrier

    Get PDF
    BACKGROUND: Therapeutic intervention in many neurological diseases is thwarted by the physical obstacle formed by the blood-brain barrier (BBB) that excludes most drugs from entering the brain from the blood. Thus, identifying efficacious modes of drug delivery to the brain remains a "holy grail" in molecular medicine and nanobiotechnology. Brain capillaries, that comprise the BBB, possess an endogenous receptor that ferries an iron-transport protein, termed p97 (melanotransferrin), across the BBB. Here, we explored the hypothesis that therapeutic drugs "piggybacked" as conjugates of p97 can be shuttled across the BBB for treatment of otherwise inoperable brain tumors. APPROACH: Human p97 was covalently linked with the chemotherapeutic agents paclitaxel (PTAX) or adriamycin (ADR) and following intravenous injection, measured their penetration into brain tissue and other organs using radiolabeled and fluorescent derivatives of the drugs. In order to establish efficacy of the conjugates, we used nude mouse models to assess p97-drug conjugate activity towards glioma and mammary tumors growing subcutaneously compared to those growing intracranially. PRINCIPAL FINDINGS: Bolus-injected p97-drug conjugates and unconjugated p97 traversed brain capillary endothelium within a few minutes and accumulated to 1-2% of the injected by 24 hours. Brain delivery with p97-drug conjugates was quantitatively 10 fold higher than with free drug controls. Furthermore, both free-ADR and p97-ADR conjugates equally inhibited the subcutaneous growth of gliomas growing outside the brain. Evocatively, only p97-ADR conjugates significantly prolonged the survival of animals bearing intracranial gliomas or mammary tumors when compared to similar cumulated doses of free-ADR. SIGNIFICANCE: This study provides the initial proof of concept for p97 as a carrier capable of shuttling therapeutic levels of drugs from the blood to the brain for the treatment of neurological disorders, including classes of resident and metastatic brain tumors. It may be prudent, therefore, to consider implementation of this novel delivery platform in various clinical settings for therapeutic intervention in acute and chronic neurological diseases

    Diagnostic reliability of magnetic resonance imaging for central nervous system syndromes in systemic lupus erythematosus: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies of magnetic resonance imaging (MRI) as a diagnostic tool for central nervous system (CNS) syndromes in systemic lupus erythematosus (SLE) contained several limitations such as study design, number of enrolled patients, and definition of CNS syndromes. We overcame these problems and statistically evaluated the diagnostic values of abnormal MRI signals and their chronological changes in CNS syndromes of SLE.</p> <p>Methods</p> <p>We prospectively studied 191 patients with SLE, comparing those with (n = 57) and without (n = 134) CNS syndrome. CNS syndromes were characterized using the American College of Rheumatology case definitions.</p> <p>Results</p> <p>Any abnormal MRI signals were more frequently observed in subjects in the CNS group (n = 25) than in the non-CNS group (n = 32) [relative risk (RR), 1.7; 95% confidence interval (CI), 1.1-2.7; <it>p </it>= 0.016] and the positive and negative predictive values for the diagnosis of CNS syndrome were 42% and 76%, respectively. Large abnormal MRI signals (ø ≥ 10 mm) were seen only in the CNS group (n = 7; RR, 3.7; CI, 2.9-4.7; <it>p </it>= 0.0002), whereas small abnormal MRI signals (ø < 10 mm) were seen in both groups with no statistical difference. Large signals always paralleled clinical outcome (<it>p </it>= 0.029), whereas small signals did not (<it>p </it>= 1.000).</p> <p>Conclusions</p> <p>Abnormal MRI signals, which showed statistical associations with CNS syndrome, had insufficient diagnostic values. A large MRI signal was, however, useful as a diagnostic and surrogate marker for CNS syndrome of SLE, although it was less common.</p

    Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model

    Get PDF
    Background: The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Findings: In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. Conclusions/Significance: This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier

    Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies

    Get PDF
    The high selectivity of the human blood-brain barrier (BBB) restricts delivery of many pharmaceuticals and therapeutic antibodies to the central nervous system. Here, we describe an in vitro microfluidic organ-on-a-chip BBB model lined by induced pluripotent stem cell-derived human brain microvascular endothelium interfaced with primary human brain astrocytes and pericytes that recapitulates the high level of barrier function of the in vivo human BBB for at least one week in culture. The endothelium expresses high levels of tight junction proteins and functional efflux pumps, and it displays selective transcytosis of peptides and antibodies previously observed in vivo. Increased barrier functionality was accomplished using a developmentally-inspired induction protocol that includes a period of differentiation under hypoxic conditions. This enhanced BBB Chip may therefore represent a new in vitro tool for development and validation of delivery systems that transport drugs and therapeutic antibodies across the human BBB
    corecore