16 research outputs found

    A Novel Biosensor for Evaluation of Apoptotic or Necrotic Effects of Nitrogen Dioxide during Acute Pancreatitis in Rat

    Get PDF
    The direct and accurate estimation of nitric dioxide levels is an extremely laborious and technically demanding procedure in the molecular diagnostics of inflammatory processes. The aim of this work is to demonstrate that a stop-flow technique utilizing a specific spectroscopic biosensor can be used for detection of nanomolar quantities of NO2 in biological milieu. The use of novel compound cis-[Cr(C2O4)(AaraNH2)(OH2)2]+ increases NO2 estimation accuracy by slowing down the rate of NO2 uptake. In this study, an animal model of pancreatitis, where nitrosative stress is induced by either 3g/kg bw or 1.5 g/kg bw dose of l-arginine, was used. Biochemical parameters and morphological characteristics of acute pancreatitis were monitored, specifically assessing pancreatic acinar cell death mode, NO2 generation and cellular glutathione level. The severity of the process correlated positively with NO2 levels in pancreatic acinar cell cytosol samples, and negatively with cellular glutathione levels

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Using Acetaminophen's Toxicity Mechanism to Enhance Cisplatin Efficacy in Hepatocarcinoma and Hepatoblastoma Cell Lines

    Get PDF
    Background/Aims: Acetaminophen overdose causes hepatotoxicity mediated by toxic metabolites generated through the cytochrome P450 enzyme. The objective of this study was to investigate whether acetaminophen (AAP) can enhance cisplatin (CDDP) cytotoxicity against human hepatocarcinoma and hepatoblastoma cells in vitro and whether this effect can be prevented by N-acetylcysteine (NAC). Methods: In vitro studies (glutathione [GSH] level, cell viability, and immunoblot assays) were performed using human hepatocarcinoma and hepatoblastoma cells cultured in AAP, CDDP, and the combination of both with or without delayed NAC administration. The pharmacology and toxicology of high-dose AAP in rats were also examined. Results: Acetaminophen decreased GSH levels in liver cancer cells in a dose- and time-dependent manner. Acetaminophen combined with CDDP had enhanced cytotoxicity over CDDP alone. The cytotoxicity caused by AAP plus CDDP was decreased by NAC, with the effectiveness being time-dependent. The GSH level was lowered in the liver but not in the blood or the brain in rats treated with a high dose of AAP (1000 mg/kg). The expression of CYP2E1 protein, a key cytochrome P450 enzyme, varies among species but is not correlated to AAP sensitivity in liver cancer cells. Conclusions: Our results suggest that a chemotherapeutic regimen containing both AAP and CDDP with delayed NAC rescue has the potential to enhance chemotherapeutic efficacy while decreasing adverse effects. This would be a promising approach particularly for hepatoblastomas regardless of cellular CYP2E1 protein level but could also be beneficial in other malignancies

    Cancer cell-intrinsic expression of MHC II in lung cancer cell lines is actively restricted by MEK/ERK signaling and epigenetic mechanisms

    No full text
    BackgroundProgrammed death 1/programmed death ligand 1 (PD-1/PD-L1) targeted immunotherapy affords clinical benefit in ~20% of unselected patients with lung cancer. The factor(s) that determine whether a tumor responds or fails to respond to immunotherapy remains an active area of investigation. We have previously defined divergent responsiveness of two KRAS-mutant cell lines to PD-1/PD-L1 blockade using an orthotopic, immunocompetent mouse model. Responsiveness to PD-1/PD-L1 checkpoint blockade correlates with an interferon gamma (IFNγ)-inducible gene signature and major histocompatibility complex class II (MHC II) expression by cancer cells. In the current study, we aim to identify therapeutic targets that can be manipulated in order to enhance cancer-cell-specific MHC II expression.MethodsResponsiveness to IFNγ and induction of MHC II expression was assessed after various treatment conditions in mouse and human non-small cell lung cancer (NSCLC) cell lines using mass cytometric and flow cytometric analysis.ResultsSingle-cell analysis using mass and flow cytometry demonstrated that IFNγ consistently induced PD-L1 and MHC class I (MHC I) across multiple murine and human NSCLC cell lines. In contrast, MHC II showed highly variable induction following IFNγ treatment both between lines and within lines. In mouse models of NSCLC, MHC II induction was inversely correlated with basal levels of phosphorylated extracellular signal-regulated kinase (ERK) 1/2, suggesting potential mitogen-activated protein (MAP) kinase-dependent antagonism of MHC II expression. To test this, cell lines were subjected to varying levels of stimulation with IFNγ, and assessed for MHC II expression in the presence or absence of mitogen-activated protein kinase kinase (MEK) inhibitors. IFNγ treatment in the presence of MEK inhibitors significantly enhanced MHC II induction across multiple lung cancer lines, with minimal impact on expression of either PD-L1 or MHC I. Inhibition of histone deacetylases (HDACs) also enhanced MHC II expression to a more modest extent. Combined MEK and HDAC inhibition led to greater MHC II expression than either treatment alone.ConclusionsThese studies emphasize the active inhibitory role that epigenetic and ERK signaling cascades have in restricting cancer cell-intrinsic MHC II expression in NSCLC, and suggest that combinatorial blockade of these pathways may engender new responsiveness to checkpoint therapies
    corecore