6 research outputs found

    Predictors of risky foraging behaviour in healthy young people

    Full text link
    During adolescence and early adulthood, learning when to avoid threats and when to pursue rewards becomes crucial. Using a risky foraging task, we investigated individual differences in this dynamic across 781 individuals aged 14-24 years who were split into a hypothesis-generating discovery sample and a hold-out confirmation sample. Sex was the most important predictor of cautious behaviour and performance. Males earned one standard deviation (or 20%) more reward than females, collected more reward when there was little to lose and reduced foraging to the same level as females when potential losses became high. Other independent predictors of cautiousness and performance were self-reported daringness, IQ and self-reported cognitive complexity. We found no evidence for an impact of age or maturation. Thus, maleness, a high IQ or self-reported cognitive complexity, and self-reported daringness predicted greater success in risky foraging, possibly due to better exploitation of low-risk opportunities in high-risk environments

    Change, stability, and instability in the Pavlovian guidance of behaviour from adolescence to young adulthood.

    Get PDF
    Pavlovian influences are important in guiding decision-making across health and psychopathology. There is an increasing interest in using concise computational tasks to parametrise such influences in large populations, and especially to track their evolution during development and changes in mental health. However, the developmental course of Pavlovian influences is uncertain, a problem compounded by the unclear psychometric properties of the relevant measurements. We assessed Pavlovian influences in a longitudinal sample using a well characterised and widely used Go-NoGo task. We hypothesized that the strength of Pavlovian influences and other 'psychomarkers' guiding decision-making would behave like traits. As reliance on Pavlovian influence is not as profitable as precise instrumental decision-making in this Go-NoGo task, we expected this influence to decrease with higher IQ and age. Additionally, we hypothesized it would correlate with expressions of psychopathology. We found that Pavlovian effects had weak temporal stability, while model-fit was more stable. In terms of external validity, Pavlovian effects decreased with increasing IQ and experience within the task, in line with normative expectations. However, Pavlovian effects were poorly correlated with age or psychopathology. Thus, although this computational construct did correlate with important aspects of development, it does not meet conventional requirements for tracking individual development. We suggest measures that might improve psychometric properties of task-derived Pavlovian measures for future studies

    Multiple Holdouts With Stability: Improving the Generalizability of Machine Learning Analyses of Brain-Behavior Relationships.

    Get PDF
    BACKGROUND:In 2009, the National Institute of Mental Health launched the Research Domain Criteria, an attempt to move beyond diagnostic categories and ground psychiatry within neurobiological constructs that combine different levels of measures (e.g., brain imaging and behavior). Statistical methods that can integrate such multimodal data, however, are often vulnerable to overfitting, poor generalization, and difficulties in interpreting the results. METHODS:We propose an innovative machine learning framework combining multiple holdouts and a stability criterion with regularized multivariate techniques, such as sparse partial least squares and kernel canonical correlation analysis, for identifying hidden dimensions of cross-modality relationships. To illustrate the approach, we investigated structural brain-behavior associations in an extensively phenotyped developmental sample of 345 participants (312 healthy and 33 with clinical depression). The brain data consisted of whole-brain voxel-based gray matter volumes, and the behavioral data included item-level self-report questionnaires and IQ and demographic measures. RESULTS:Both sparse partial least squares and kernel canonical correlation analysis captured two hidden dimensions of brain-behavior relationships: one related to age and drinking and the other one related to depression. The applied machine learning framework indicates that these results are stable and generalize well to new data. Indeed, the identified brain-behavior associations are in agreement with previous findings in the literature concerning age, alcohol use, and depression-related changes in brain volume. CONCLUSIONS:Multivariate techniques (such as sparse partial least squares and kernel canonical correlation analysis) embedded in our novel framework are promising tools to link behavior and/or symptoms to neurobiology and thus have great potential to contribute to a biologically grounded definition of psychiatric disorders

    An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization

    Get PDF
    Funder: Canada Research Chairs; FundRef: http://dx.doi.org/10.13039/501100001804Funder: Fonds de la Recherche du Quebec – SantéFunder: Autism Research TrustFunder: Canadian Institutes of Health Research; FundRef: http://dx.doi.org/10.13039/501100000024Funder: BrainCanadaFunder: MNI-Cambridge collaborative awardAdolescence is a critical time for the continued maturation of brain networks. Here, we assessed structural connectome development in a large longitudinal sample ranging from childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold spaces, we identified a marked expansion of structural connectomes, with strongest effects in transmodal regions during adolescence. Findings reflected increased within-module connectivity together with increased segregation, indicating increasing differentiation of higher-order association networks from the rest of the brain. Projection of subcortico-cortical connectivity patterns into these manifolds showed parallel alterations in pathways centered on the caudate and thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and subcortical manifold features at baseline and their maturational change predicted measures of intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge the conceptual and empirical gaps between macroscale network reconfigurations, microscale processes, and cognitive outcomes in adolescent development

    An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization.

    Get PDF
    Adolescence is a critical time for the continued maturation of brain networks. Here, we assessed structural connectome development in a large longitudinal sample ranging from childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold spaces, we identified a marked expansion of structural connectomes, with strongest effects in transmodal regions during adolescence. Findings reflected increased within-module connectivity together with increased segregation, indicating increasing differentiation of higher-order association networks from the rest of the brain. Projection of subcortico-cortical connectivity patterns into these manifolds showed parallel alterations in pathways centered on the caudate and thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and subcortical manifold features at baseline and their maturational change predicted measures of intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge the conceptual and empirical gaps between macroscale network reconfigurations, microscale processes, and cognitive outcomes in adolescent development
    corecore