15,353 research outputs found

    Evaluation of Bacillus thuringiensis Berliner as an alternative control of small hive beetles, Aethina tumida Murray (Coleoptera: Nitidulidae)

    Get PDF
    Small hive beetles, Aethina tumida Murray, are parasites and scavengers of honeybee colonies, Apis mellifera L., and have become an invasive species that can cause considerable damage in its new distribution areas. An effective subspecies of Bacillus thuringiensis Berliner (=Bt) would provide an alternative to chemical control of this pest. Therefore, we tested three different Bt strains [B. thuringiensis, var. aizawai (B401®), B. thuringiensis var. kurstaki (Novodor®) and B. thuringiensis var. San Diego tenebrionis (Jackpot®)] and Perizin® (3.2% coumaphos), each applied on combs with a pollen diet fed to pairs of adult beetles. This evaluates the products for the suppression of successful small hive beetle reproduction. While none of the tested Bt strains showed a significant effect on the number of produced wandering larvae, we could confirm the efficacy of coumaphos for the control of small hive beetles. We further show that it is also efficient when applied with a lower concentration as a liquid on the combs. We suggest the continued search for efficient Bt strains naturally infesting small hive beetles in its endemic and new ranges, which may become a part of the integrated management of this pest

    Bound States in the Continuum Realized in the One-Dimensional Two-Particle Hubbard Model with an Impurity

    Full text link
    We report a bound state of the one-dimensional two-particle (bosonic or fermionic) Hubbard model with an impurity potential. This state has the Bethe-ansatz form, although the model is nonintegrable. Moreover, for a wide region in parameter space, its energy is located in the continuum band. A remarkable advantage of this state with respect to similar states in other systems is the simple analytical form of the wave function and eigenvalue. This state can be tuned in and out of the continuum continuously.Comment: A semi-exactly solvable model (half of the eigenstates are in the Bethe form

    An exact Riemann solver based solution for regular shock refraction

    Full text link
    We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest. When the shock impinges on the density discontinuity, it refracts and in the hydrodynamical case 3 signals arise. Regular refraction means that these signals meet at a single point, called the triple point. After reflection from the top wall, the contact discontinuity becomes unstable due to local Kelvin-Helmholtz instability, causing the contact surface to roll up and develop the Richtmyer-Meshkov instability. We present an exact Riemann solver based solution strategy to describe the initial self similar refraction phase, by which we can quantify the vorticity deposited on the contact interface. We investigate the effect of a perpendicular magnetic field and quantify how addition of a perpendicular magnetic field increases the deposition of vorticity on the contact interface slightly under constant Atwood number. We predict wave pattern transitions, in agreement with experiments, von Neumann shock refraction theory, and numerical simulations performed with the grid-adaptive code AMRVAC. These simulations also describe the later phase of the Richtmyer-Meshkov instability.Comment: 21 pages, 17 figures in 41 ps-files, accepted by J. Fluid Mec

    Performance of a centrifugal pump running in inverse mode

    Get PDF
    This paper presents the functional characterization of a centrifugal pump used as a turbine. It shows the characteristics of the machine involved at several rotational speeds, comparing the respective flows and heads. In this way, it is possible to observe the influence of the rotational speed on efficiency, as well as obtaining the characteristics at constant head and runaway speed. Also, the forces actuating on the impeller were studied. An uncertainty analysis was made to assess the accuracy of the results. The research results indicate that the turbine characteristics can be predicted to some extent from the pump characteristics, that water flows out of the runner free of swirl flow at the best efficiency point, and that radial stresses are lower than in pump mode

    Mass-Temperature Relation of Galaxy Clusters: A Theoretical Study

    Get PDF
    Combining conservation of energy throughout nearly-spherical collapse of galaxy clusters with the virial theorem, we derive the mass-temperature relation for X-ray clusters of galaxies T=CM2/3T=CM^{2/3}. The normalization factor CC and the scatter of the relation are determined from first principles with the additional assumption of initial Gaussian random field. We are also able to reproduce the recently observed break in the M-T relation at T \sim 3 \keV, based on the scatter in the underlying density field for a low density Λ\LambdaCDM cosmology. Finally, by combining observational data of high redshift clusters with our theoretical formalism, we find a semi-empirical temperature-mass relation which is expected to hold at redshifts up to unity with less than 20% error.Comment: 43 pages, 13 figures, One figure is added and minor changes are made. Accepted for Publication in Ap

    Continuous measurements in a composite quantum system and possible exchange of information between its parts

    Full text link
    We study an influence of the continuous measurement in a composite quantum system C on the evolution of the states of its parts. It is shown that the character of the evolution (decoherence or recoherence) depends on the type of the measured quantity and on the initial state of the system. A number of conditions under which the states of the subsystems of C decohere during the measuring process are established. We propose a model of the composite system and specify the observable the measurement of which may result in the recoherence of the state of one of the subsystems of C. In the framework of this model we find the optimal regime for the exchange of information between the parts of C during the measurement. The main characteristics of such a process are computed. We propose a scheme of detection of the recoherence under the measurement in a concrete physical experiment.Comment: 6 page
    • …
    corecore