10,312 research outputs found

    The Roughness Properties of Small Ice-Bearing Craters at the South Pole of the Moon: Implications for Accessing Fresh Water Ice in Future Surface Operations

    Get PDF
    The lunar poles provide a fascinating thermal environment capable of cold-trapping water ice on geologic timescales [1]. While there have been many observations indicating the presence of water ice at the lunar surface [e.g., 24], it is still not clear when this ice was delivered to the Moon. The timing of volatile dep-osition provides important constraints on the origin of lunar ice because different delivery mechanisms have been active at different times throughout lunar history. We previously found that some small (<10 km) cra-ters at the south pole of the Moon have morphologies suggestive of relatively young ages, on the basis of crisp crater rims [5]. These craters are too small to date with robust cratering statistics [5], but the possibility of ice in young craters is intriguing because it suggests that there is some recent and perhaps ongoing mechanism that is delivering or redistributing water to polar cold traps. Therefore, understanding if these small, ice-bear-ing craters are indeed young is essential in understand-ing the age and source of volatiles on the Moon. Here we take a new approach to understand the ages of these small polar cold traps: analyzing the roughness properties of small ice-bearing craters. It is well under-stood that impact crater properties (e.g., morphology, rock abundance, and roughness) evolve with time due to a variety of geologic and space-weathering processes [611]. Topographic roughness is a measurement of the local deviation from the mean topography, providing a measurement of surface texture, and is a powerful tool for evaluating surface evolution over geologic time [e.g., 1114]. In this study we analyze the roughness of southern lunar craters (40S90S) from all geologic eras, and determine how the roughness of small (<10 km) ice-bearing craters compare. We discuss the implications of the ages of ice-bearing south polar craters, and potential strategies for accessing fresh ice on the Moon

    Relaxation Phenomena in a System of Two Harmonic Oscillators

    Full text link
    We study the process by which quantum correlations are created when an interaction Hamiltonian is repeatedly applied to a system of two harmonic oscillators for some characteristic time interval. We show that, for the case where the oscillator frequencies are equal, the initial Maxwell-Boltzmann distributions of the uncoupled parts evolve to a new equilibrium Maxwell-Boltzmann distribution through a series of transient Maxwell-Boltzmann distributions. Further, we discuss why the equilibrium reached when the two oscillator frequencies are unequal, is not a thermal one. All the calculations are exact and the results are obtained through an iterative process, without using perturbation theory.Comment: 22 pages, 6 Figures, Added contents, to appear in PR

    Design of a fault tolerant airborne digital computer. Volume 1: Architecture

    Get PDF
    This volume is concerned with the architecture of a fault tolerant digital computer for an advanced commercial aircraft. All of the computations of the aircraft, including those presently carried out by analogue techniques, are to be carried out in this digital computer. Among the important qualities of the computer are the following: (1) The capacity is to be matched to the aircraft environment. (2) The reliability is to be selectively matched to the criticality and deadline requirements of each of the computations. (3) The system is to be readily expandable. contractible, and (4) The design is to appropriate to post 1975 technology. Three candidate architectures are discussed and assessed in terms of the above qualities. Of the three candidates, a newly conceived architecture, Software Implemented Fault Tolerance (SIFT), provides the best match to the above qualities. In addition SIFT is particularly simple and believable. The other candidates, Bus Checker System (BUCS), also newly conceived in this project, and the Hopkins multiprocessor are potentially more efficient than SIFT in the use of redundancy, but otherwise are not as attractive

    Quantum State Tomography Using Successive Measurements

    Full text link
    We describe a quantum state tomography scheme which is applicable to a system described in a Hilbert space of arbitrary finite dimensionality and is constructed from sequences of two measurements. The scheme consists of measuring the various pairs of projectors onto two bases --which have no mutually orthogonal vectors--, the two members of each pair being measured in succession. We show that this scheme implies measuring the joint quasi-probability of any pair of non-degenerate observables having the two bases as their respective eigenbases. The model Hamiltonian underlying the scheme makes use of two meters initially prepared in an arbitrary given quantum state, following the ideas that were introduced by von Neumann in his theory of measurement.Comment: 12 Page

    Weak Value in Wave Function of Detector

    Full text link
    A simple formula to read out the weak value from the wave function of the measuring device after the postselection with the initial Gaussian profile is proposed. We apply this formula for the weak value to the classical experiment of the realization of the weak measurement by the optical polarization and obtain the weak value for any pre- and post-selections. This formula automatically includes the interference effect which is necessary to yields the weak value as an outcome of the weak measurement.Comment: 3 pages, no figures, Published in Journal of the Physical Society of Japa

    Uncollapsing the wavefunction by undoing quantum measurements

    Full text link
    We review and expand on recent advances in theory and experiments concerning the problem of wavefunction uncollapse: Given an unknown state that has been disturbed by a generalized measurement, restore the state to its initial configuration. We describe how this is probabilistically possible with a subsequent measurement that involves erasing the information extracted about the state in the first measurement. The general theory of abstract measurements is discussed, focusing on quantum information aspects of the problem, in addition to investigating a variety of specific physical situations and explicit measurement strategies. Several systems are considered in detail: the quantum double dot charge qubit measured by a quantum point contact (with and without Hamiltonian dynamics), the superconducting phase qubit monitored by a SQUID detector, and an arbitrary number of entangled charge qubits. Furthermore, uncollapse strategies for the quantum dot electron spin qubit, and the optical polarization qubit are also reviewed. For each of these systems the physics of the continuous measurement process, the strategy required to ideally uncollapse the wavefunction, as well as the statistical features associated with the measurement is discussed. We also summarize the recent experimental realization of two of these systems, the phase qubit and the polarization qubit.Comment: 19 pages, 4 figure

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Self consistent theory of unipolar charge-carrier injection in metal/insulator/metal systems

    Full text link
    A consistent device model to describe current-voltage characteristics of metal/insulator/metal systems is developed. In this model the insulator and the metal electrodes are described within the same theoretical framework by using density of states distributions. This approach leads to differential equations for the electric field which have to be solved in a self consistent manner by considering the continuity of the electric displacement and the electrochemical potential in the complete system. The model is capable of describing the current-voltage characteristics of the metal/insulator/metal system in forward and reverse bias for arbitrary values of the metal/ insulator injection barriers. In the case of high injection barriers, approximations are provided offering a tool for comparison with experiments. Numerical calculations are performed exemplary using a simplified model of an organic semiconductor.Comment: 21 pages, 8 figure

    Objective properties from subjective quantum states: Environment as a witness

    Full text link
    We study the emergence of objective properties in open quantum systems. In our analysis, the environment is promoted from a passive role of reservoir selectively destroying quantum coherence, to an active role of amplifier selectively proliferating information about the system. We show that only preferred pointer states of the system can leave a redundant and therefore easily detectable imprint on the environment. Observers who--as it is almost always the case--discover the state of the system indirectly (by probing a fraction of its environment) will find out only about the corresponding pointer observable. Many observers can act in this fashion independently and without perturbing the system: they will agree about the state of the system. In this operational sense, preferred pointer states exist objectively.Comment: 5 pages, 1 figure, extensive changes, presentation improve
    corecore