2,130 research outputs found

    Epigenetics applied to child and adolescent mental health: Progress, challenges and opportunities

    Get PDF
    BackgroundEpigenetic processes are fast emerging as a promising molecular system in the search for both biomarkers and mechanisms underlying human health and disease risk, including psychopathology.MethodsIn this review, we discuss the application of epigenetics (specifically DNA methylation) to research in child and adolescent mental health, with a focus on the use of developmentally sensitive datasets, such as prospective, population-based cohorts. We look back at lessons learned to date, highlight current developments in the field and areas of priority for future research. We also reflect on why epigenetic research on child and adolescent mental health currently lags behind other areas of epigenetic research and what we can do to overcome existing barriers.ResultsTo move the field forward, we advocate for the need of large-scale, harmonized, collaborative efforts that explicitly account for the time-varying nature of epigenetic and mental health data across development.ConclusionWe conclude with a perspective on what the future may hold in terms of translational applications as more robust signals emerge from epigenetic research on child and adolescent mental health

    Epigenetics applied to child and adolescent mental health: Progress, challenges and opportunities

    Get PDF
    BACKGROUND: Epigenetic processes are fast emerging as a promising molecular system in the search for both biomarkers and mechanisms underlying human health and disease risk, including psychopathology. METHODS: In this review, we discuss the application of epigenetics (specifically DNA methylation) to research in child and adolescent mental health, with a focus on the use of developmentally sensitive datasets, such as prospective, population-based cohorts. We look back at lessons learned to date, highlight current developments in the field and areas of priority for future research. We also reflect on why epigenetic research on child and adolescent mental health currently lags behind other areas of epigenetic research and what we can do to overcome existing barriers. RESULTS: To move the field forward, we advocate for the need of large-scale, harmonized, collaborative efforts that explicitly account for the time-varying nature of epigenetic and mental health data across development. CONCLUSION: We conclude with a perspective on what the future may hold in terms of translational applications as more robust signals emerge from epigenetic research on child and adolescent mental health

    General Psychopathology in Children : Epidemiological Studies of Biological Mechanisms

    Get PDF
    Co-occurrence of mental disorders is widespread and studies have identified a general psychopathology factor reflecting vulnerability to experience a range of psychiatric problems. However, the biological mechanisms underlying the co-occurrence of child psychiatric symptoms, such as emotional, aggression and attention problems, remain unclear. The main question of this dissertation was: which biological factors are associated with child psyc

    Quantum Electrical Dipole in Triangular Systems: a Model for Spontaneous Polarity in Metal Clusters

    Full text link
    Triangular symmetric molecules with mirror symmetry perpendicular to the 3-fold axis are forbidden to have a fixed electrical dipole moment. However, if the ground state is orbitally degenerate and lacks inversion symmetry, then a ``quantum'' dipole moment does exist. The system of 3 electrons in D_3h symmetry is our example. This system is realized in triatomic molecules like Na_3. Unlike the fixed dipole of a molecule like water, the quantum moment does not point in a fixed direction, but lies in the plane of the molecule and takes quantized values +/- mu_0 along any direction of measurement in the plane. An electric field F in the plane leads to a linear Stark splitting +/- mu_0 F}. We introduce a toy model to study the effect of Jahn-Teller distortions on the quantum dipole moment. We find that the quantum dipole property survives when the dynamic Jahn-Teller effect is included, if the distortion of the molecule is small. Linear Stark splittings are suppressed in low fields by molecular rotation, just as the linear Stark shift of water is suppressed, but will be revealed in moderately large applied fields and low temperatures. Coulomb correlations also give a partial suppression.Comment: 10 pages with 7 figures included; thoroughly revised with a new coauthor; final minor change

    Observation-assisted optimal control of quantum dynamics

    Get PDF
    This paper explores the utility of instantaneous and continuous observations in the optimal control of quantum dynamics. Simulations of the processes are performed on several multilevel quantum systems with the goal of population transfer. Optimal control fields are shown to be capable of cooperating or fighting with observations to achieve a good yield, and the nature of the observations may be optimized to more effectively control the quantum dynamics. Quantum observations also can break dynamical symmetries to increase the controllability of a quantum system. The quantum Zeno and anti-Zeno effects induced by observations are the key operating principles in these processes. The results indicate that quantum observations can be effective tools in the control of quantum dynamics

    Undoing a weak quantum measurement of a solid-state qubit

    Get PDF
    We propose an experiment which demonstrates the undoing of a weak continuous measurement of a solid-state qubit, so that any unknown initial state is fully restored. The undoing procedure has only a finite probability of success because of the non-unitary nature of quantum measurement, though it is accompanied by a clear experimental indication of whether or not the undoing has been successful. The probability of success decreases with increasing strength of the measurement, reaching zero for a traditional projective measurement. Measurement undoing (``quantum un-demolition'') may be interpreted as a kind of a quantum eraser, in which the information obtained from the first measurement is erased by the second measurement, which is an essential part of the undoing procedure. The experiment can be realized using quantum dot (charge) or superconducting (phase) qubits.Comment: 5 page

    Coherence of a Josephson phase qubit under partial-collapse measurement

    Full text link
    We discuss quantum evolution of a decaying state in relation to a recent experiment of Katz et al. Based on exact analytical and numerical solutions of a simple model, we identify a regime where qubit retains coherence over a finite time interval independently of the rates of three competing decoherence processes. In this regime, the quantum decay process can be continuously monitored via a ``weak'' measurement without affecting the qubit coherence.Comment: 4p., 2eps figure

    Daytime fluctuations of endurance performance in young soccer players: a randomized cross-over trial

    Get PDF
    Objectives. Fluctuations of physical performance and biological responses during a repetitive daily 24-h cycle are known as circadian rhythms. These circadian rhythms can influence the optimal time of day for endurance performance and related parameters which can be crucial in a variety of sports disciplines. The current study aimed to evaluate the daytime variations in endurance running performance in a 3.000-m field run and endurance running performance, blood lactate levels, and heart rate in an incremental treadmill test in adolescent soccer players. Results. In this study, 15 adolescent male soccer players (age: 18.0 ± 0.6 years) performed a 3.000-m run and an incremental treadmill test at 7:00–8:00 a.m. and 7:00–8:00 p.m. in a randomized cross-over manner. No significant variations after a Bonferroni correction were evident in endurance running performance, perceived exertion, blood lactate levels, and heart rates between the morning and the evening. Here, the largest effect size was observed for maximal blood lactate concentration (9.15 ± 2.18 mmol/l vs. 10.64 ± 2.30 mmol/l, p = .110, ES = 0.67). Therefore, endurance running performance and physiological responses during a field-based 3.000-m run and a laboratory-based test in young male soccer players indicated no evidence for daytime variations

    Particle tracking in a salinity gradient: A method for measuring sinking rate of individual phytoplankton in the laboratory

    Get PDF
    This paper presents a new method to measure the sinking rates of individual phytoplankton “particles” (cells, chains, colonies, and aggregates) in the laboratory. Conventional particle tracking and high resolution video imaging were used to measure particle sinking rates and particle size. The stabilizing force of a very mild linear salinity gradient (1 ppt over 15 cm) prevented the formation of convection currents in the laboratory settling chamber. Whereas bulk settling methods such as SETCOL provide a single value of sinking rate for a population, this method allows the measurement of sinking rate and particle size for a large number of individual particles or phytoplankton within a population. The method has applications where sinking rates vary within a population, or where sinking rate-size relationships are important. Preliminary data from experiments with both laboratory and field samples of marine phytoplankton are presented here to illustrate the use of the technique, its applications, and limitations. Whereas this paper deals only with sinking phytoplankton, the method is equally valid for positively buoyant species, as well as nonbiological particles

    Continuous quantum feedback of coherent oscillations in a solid-state qubit

    Full text link
    We have analyzed theoretically the operation of the Bayesian quantum feedback of a solid-state qubit, designed to maintain perfect coherent oscillations in the qubit for arbitrarily long time. In particular, we have studied the feedback efficiency in presence of dephasing environment and detector nonideality. Also, we have analyzed the effect of qubit parameter deviations and studied the quantum feedback control of an energy-asymmetric qubit.Comment: 11 page
    corecore