30 research outputs found

    Measurement of electrical parameters and current components in the bulk of silicon solar cells

    Get PDF
    A review and illustration of electrical measurements for determination of the bulk parameters in silicon solar cells is given. The presentation concentrates on transient and small signal admittance measurements. These measurements yield accurate and reliable values of the base lifetime and the surface recombination velocity at the back contract without inaccuracies that normally results from electrons and holes in the p/n junction space charge region. This then allows the determination of the recombination current in each region of the cell. As an example, current components in the emitter, low doped base, high doped base and junction space charge region of the back surface field cell are obtained. Such analysis is essential in determining the relative importance of the base and the emitter and, thus, the region that limits the cell efficiency

    Heavy doping effects in high efficiency silicon solar cells

    Get PDF
    The use of a (silicon)/(heavily doped polysilicon)/(metal) structure to replace the conventional high-low junction (or back-surface-field, BSF) structure of silicon solar cells was examined. The results of an experimental study designed to explore both qualitatively and quantitatively the mechanism of the improved current gain in bipolar transistors with polysilicon emitter contact are presented. A reciprocity theorem is presented that relates the short circuit current of a device, induced by a carrier generation source, to the minority carrier Fermi level in the dark. A method for accurate measurement of minority-carrier diffusion coefficients in silicon is described

    Design of high efficiency HLE solar cells for space and terrestrial applications

    Get PDF
    A first-order analysis of HLE cells is presented for both beginning-of-life and end-of-life conditions. Based on this analysis and on experimentally observed values for material parameters. Design approaches for both space and terrestrial cells are presented. The approaches result in specification of doping levels, junction depths, and surface conditions. The proposed structures are projected to have both high V sub OC and high J sub SC

    Studies of silicon pn junction solar cells

    Get PDF
    Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described

    Heavy doping effects in high efficiency silicon solar cells

    Get PDF
    A model for bandgap shrinkage in semiconductors is developed and applied to silicon. A survey of earlier experiments, and of new ones, give an agreement between the model and experiments on n- and p-type silicon which is good as far as transport measurements in the 300 K range. The discrepancies between theory and experiment are no worse than the discrepancies between the experimental results of various authors. It also gives a good account of recent, optical determinations of band gap shrinkage at 5 K

    The EL2 trap in highly doped GaAs:Te

    Get PDF
    We have investigated highly doped GaAs:Te at different doping concentrations (>10(17) cm(-3)) to assess the presence of the EL2 trap. We have utilized both capacitance and current transient spectroscopy techniques. The crucial parameter for the detection of EL2 is the relative position of the electron quasi-Fermi level in the depletion region. The observed shift of the EL2 apparent activation energy with increasing doping concentration is also discussed

    Interface trap generation in MOS transistors at high current densities

    No full text
    corecore