6,163 research outputs found
Monitoring the LHCb Experiment Computing Infrastructure with NAGIOS
LHCb has a large and complex infrastructure consisting of thousands of servers and embedded computers, hundreds of network devices and a lot of common infrastructure services such as shared storage, login and time services, databases and many others. All aspects that are operatively critic are integrated into the standard Experiment Control System (ECS) based on PVSSII. This enables non-expert operators to do first-line reactions. As the lower level and in particular for monitoring the infrastructure, the Control System itself depends on a secondary infrastructure, whose monitoring is based on NAGIOS. We present the design and implementation of the fabric management based on NAGIOS. Care has been taken to complement rather than duplicate functionality available in the Experiment Control System
A programmable 10 Gigabit injector for the LHCb DAQ and its upgrade
The LHCb High Level Trigger and Data Acquisition system selects about 2 kHz of events out of the 1 MHz of events, which have been selected previously by the first-level hardware trigger. The selected events are consolidated into files and then sent to permanent storage for subsequent analysis on the Grid. The goal of the upgrade of the LHCb readout is to lift the limitation to 1 MHz. This means speeding up the DAQ to 40 MHz. Such a DAQ system will certainly employ 10 Gigabit or technologies and might also need new networking protocols: a customized TCP or proprietary solutions. A test module is being presented, which integrates in the existing LHCb infrastructure. It is a 10-Gigabit traffic generator, flexible enough to generate LHCb’s raw data packets using dummy data or simulated data. These data are seen as real data coming from sub-detectors by the DAQ. The implementation is based on an FPGA using 10 Gigabit Ethernet interface. This module is integrated in the experiment control system. The architecture, implementation, and performance results of the solution will be presented
Fundamental Vibrational Transitions of HCl Detected in CRL 2136
We would like to understand the chemistry of dense clouds and their hot cores
more quantitatively by obtaining more complete knowledge of the chemical
species present in them. We have obtained high-resolution infrared absorption
spectroscopy at 3-4 um toward the bright infrared source CRL 2136. The
fundamental vibration-rotation band of HCl has been detected within a dense
cloud for the first time. The HCl is probably located in the warm compact
circumstellar envelope or disk of CRL 2136. The fractional abundance of HCl is
(4.9-8.7)e-8, indicating that approximately 20 % of the elemental chlorine is
in gaseous HCl. The kinetic temperature of the absorbing gas is 250 K, half the
value determined from infrared spectroscopy of 13CO and water. The percentage
of chlorine in HCl is approximately that expected for gas at this temperature.
The reason for the difference in temperatures between the various molecular
species is unknown.Comment: 6 pages, 3 figures, A&A in pres
Monitoring the LHCb Experiment Computing Infrastructure with NAGIOS
LHCb has a large and complex infrastructure consisting of thousands of servers and embedded computers, hundreds of network devices and a lot of common infrastructure services such as shared storage, login and time services, databases and many others. All aspects that are operatively critic are integrated into the standard Experiment Control System (ECS) based on PVSSII. This enables non-expert operators to do first-line reactions. As the lower level and in particular for monitoring the infrastructure, the Control System itself depends on a secondary infrastructure, whose monitoring is based on NAGIOS. We present the design and implementation of the fabric management based on NAGIOS. Care has been taken to complement rather than duplicate functionality available in the Experiment Control System
Linux implementation of the MEP protocol for the LHCb experiment
We present a kernel implementation of the LHCb MEP protocol. MEP is implemented in the IP stack as a loadable module. This allows for better monitoring at the network level and can potentially reduce the overhead associated with the reception of the data
Bringing the power of dynamic languages to hardware control systems
Hardware control systems are normally programmed using high-performance languages like C or C++ and increasingly also Java. All these languages are strongly typed and compiled which brings usually good performance but at the cost of a longer development and testing cycle and the need for more programming expertise. Dynamic languages which were long thought to be too slow and not powerful enough for control purposes are, thanks to modern powerful computers and advanced implementation techniques, fast enough for many of these tasks. We present examples from the LHCb Experiment Control System (ECS), which is based on a commercial SCADA software. We have successfully used Python to integrate hardware devices into the ECS. We present the necessary lightweight middle-ware we have developed, including examples for controlling hardware and software devices. We also discuss the development cycle, tools used and compare the effort to traditional solutions
Detection of Acetylene toward Cepheus A East with Spitzer
The first map of interstellar acetylene (C2H2) has been obtained with the
infrared spectrograph onboard the Spitzer Space Telescope. A spectral line map
of the vibration-rotation band at 13.7 microns carried out toward the
star-forming region Cepheus A East, shows that the C2H2 emission peaks in a few
localized clumps where gas-phase CO2 emission was previously detected with
Spitzer. The distribution of excitation temperatures derived from fits to the
C2H2 line profiles ranges from 50 to 200 K, a range consistent with that
derived for gaseous CO2 suggesting that both molecules probe the same warm gas
component. The C2H2 molecules are excited via radiative pumping by 13.7 microns
continuum photons emanating from the HW2 protostellar region. We derive column
densities ranging from a few x 10^13 to ~ 7 x 10^14 cm^-2, corresponding to
C2H2 abundances of 1 x 10^-9 to 4 x 10^-8 with respect to H2. The spatial
distribution of the C2H2 emission along with a roughly constant N(C2H2)/N(CO2)
strongly suggest an association with shock activity, most likely the result of
the sputtering of acetylene in icy grain mantles.Comment: 11 pages, 5 figures, accepted for publication in ApJ Letter
- …
