
A programmable 10 Gigabit injector for the LHCb DAQ and its upgrade

V. Delorda,b, J. Garniera, N. Neufelda

a CERN, 1211 Geneva 23, Switzerland

b ISIMA, 63173 Aubière, France

vincent.delord@cern.ch, jean-christophe.garnier@cern.ch, niko.neufeld@cern.ch

Abstract

The LHCb High Level Trigger and Data Acquisition system se-
lects about 2 kHz of events out of the 1 MHz of events, which
have been selected previously by the first-level hardware trig-
ger. The selected events are consolidated into files and then sent
to permanent storage for subsequent analysis on the Grid. The
goal of the upgrade of the LHCb readout is to lift the limita-
tion to 1 MHz. This means speeding up the DAQ to 40 MHz.
Such a DAQ system will certainly employ 10 Gigabit or tech-
nologies and might also need new networking protocols: a cus-
tomized TCP or proprietary solutions. A test module is being
presented, which integrates in the existing LHCb infrastructure.
It is a 10-Gigabit traffic generator, flexible enough to generate
LHCb’s raw data packets using dummy data or simulated data.
These data are seen as real data coming from sub-detectors by
the DAQ. The implementation is based on an FPGA using 10
Gigabit Ethernet interface. This module is integrated in the ex-
periment control system. The architecture, implementation, and
performance results of the solution will be presented.

I. INTRODUCTION

The LHCb experiment [1] is currently using a partition ded-
icated for tests, using a data-flow generator [2] [3]. It gets sim-
ulated data from an on-site storage, formats them to the Online
protocol and sends them to the High Level Trigger (HLT) [4]
farm. The entire Online and Offline systems can be tested this
way during LHC shutdown periods, and even in parallel of nor-
mal activities.

The project presented in this paper is related to the LHCb
upgrade project, and comes mainly from two requirements. The
data acquisition (DAQ) [5] system relies currently on Gigabit
Ethernet. Its rate is about 35 GB/s. The average size of an
event is 35 kB, the event rate is 1 MHz. The upgraded detector
aim to reach the full readout speed at 40 MHz. The upgraded
DAQ will likely use 10 Gigabit Ethernet (GBE) or Infiniband.
The HLT farm processes these events and produces an output
rate of 2 kHz.

The idea is to provide a new solution which would be inte-
grated into the system like a real readout board. It would be-
have like a readout board, except that it would get simulated
data from a storage system instead of the physics data from the
detector. It is however a long term R&D project and it would be
interesting to include this test device in the current DAQ config-
uration.

A first design is presented in this paper. Sec. II. presents

the study and the specifications of the project. Sec. III. presents
the main ideas and technologies which manages each part of the
system. Sec. IV. discusses about the current limits and the next
steps in the design.

Figure 1: The LHCb data acquisition system and its main data-flows.
Both are triggered and controlled the same way. The only difference is
the source of the physics events.

II. SPECIFICATIONS

A. Aims

The aims of the test device “injector” are:

• To provide a data-flow identical to the normal data-flow
coming from the detector and the Readout Boards [6]. It
means that it has to send network frames as if they were
coming from the Readout Board layer, faking the IP ad-
dresses [7] and other informations.

• This data-flow has to be complex enough in order to be
used for trigger and Offline tests. The simulated data-flow
is usually represented by several files of ten million events.
The average size of an event is 35 kB.

• To be integrated into the DAQ as a Readout Board. It
means to be the connected to the Readout Supervisor (Tim-
ing and Fast Control, TFC) [8] and to be triggered by it.

525

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44240172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


• To be integrated into the Experiment Control System
(ECS) [9] .

• To be used in parallel with every other LHCb activity.

In the end, the architecture shown in Figure 1 would pro-
vide two identical data-flows. One will be dedicated to physics
analysis, while the other one will be used for large scale tests.

As the project is in its very first stages, and related to the
parallel on-going LHCb upgrade, it has some specific aims. For
the design period of the upgraded DAQ architecture, it would
be interesting to use this injection device as a pattern generator.
Since the protocol that an upgraded DAQ will use is not define
yet, it is interesting to have a modular architecture for the in-
jector so we could perform tests using the current Multi-Event
Packet (MEP)[10] protocol, or using the Transport Control Pro-
tocol (TCP) [11].

B. Analysis

In order to get a high data rate injection, this device will be
first studied with a 10 GbE interface. Using a single 10 GbE
Injector would allow to get a 35 kHz rate. Our aim is to provide
an input rate high enough for the HLT farm to perform event se-
lection, i.e. greater than 2 kHz. This is therefore already much
faster, and it would be possible to use several injection devices
to increase this rate to reach the real one. Driving a 10 GbE net-
work interface is quite limited using commodity hardware [12].
Indeed reaching the line rate requires at least one CPU entirely
dedicated to drive the interface. Processing the events is also
quite heavy.

The main task is to read simulated data, to process them
lightly before to format them to the networking protocol, ac-
cording to the trigger information coming from the readout su-
pervisor. It can be achieved using a pipelined architecture, with
different stages for each part of the processing: reading, format-
ting, encapsulating, sending (as shown in Figure 2).

Figure 2: 4-stage pipeline processing events independent from each
other.

The Readout Supervisor uses the Time, Trigger and Con-
trol (TTC) [13] interface to distribute information over all Read-
out Boards and over Injection Devices. It is required to process
these information in Real-Time and to be always synchronised,

with the supervisor and with peer injectors. This means that
we cannot suffer from a delay caused by reading the simulated
event or from the access to the network interface.

It has been decided, in order to meet all the requirements
the best as possible, to implement the injector on a hardware
setup, based on a Field-Programmable Gate Array (FPGA). An
hardware development is indeed the best solution to process the
Readout Supervisor triggers. This promises better performances
processing data, and driving the 10 GbE interface.

An Altera PCI development board, based on the Arria GX
FPGA, was chosen for a preliminary implementation. It is fea-
turing an High-Speed Mezzanine Connector (HSMC) which al-
lows us to interface various types of connectors for the 10 GbE
and the TTC interfaces. This board will not reach the 10 GbE
line rate. It is used for proofs of concept, for preliminary im-
plementation and tests. The next version will very likely use an
Altera Stratix family FPGA, in order to drive as efficiently as
possible a Small Form Factor Pluggable Transceiver (SFP+).

According to all these choices, Figure 3 presents schemati-
cally the architecture of the hardware data injector. The design
has to be modular, so we could easily replace a core by another
one. This would be used mainly on the layer 4 networking core,
to address the specifications, and for the storage access, as this
part is still under study and it would be interesting to compare
several solutions.

Figure 3: Architecture of the FPGA.

III. IMPLEMENTATION

The architecture of every core follows a generic scheme
shown in Figure 4. It consists of a Control Unit, which is a
Finite State Machine, and a Processing Unit. The Control Unit
generates signals to trigger actions in the Processing Unit. The
processing unit implements memories, registers and computing
units in order to process the data-flow.

526



Figure 4: Generic model of a core.

This section presents the implementation of the networking
layer, and the investigations for the storage access layer and the
integration into the experiment control system.

A. Networking Implementation

The current network stack in LHCb is MEP over IP over
Ethernet. MEP is a kind of User Datagram Protocol (UDP) [14]
which is limited in features. With this device, we would there-
fore like to test other protocols over IP. We are considering to
use the TCP protocol for the upgraded DAQ. It would provide
flow control and would ensure that no data are lost over the net-
work. IP and Ethernet cores will be always used.

The idea is to implement one core per protocol, and to con-
nect them in a pipeline. All modules are therefore working in
parallel and producing a stream of packets on the network inter-
face.

A licensed Intellectual Property manages the 10 GbE Ether-
net Media Access Control (MAC). On top of it, the IP and MEP
cores were developed. A particularity of our design is that the
IP core is custom. It does not include the IP fragmentation pro-
cess, and it is only performing data sending. We can afford this
only in the case of the MEP protocol, as we need only to send
data, not to receive them. The fragmentation is performed in the
output of the MEP module. These non-respect of the standard
allows the minimization of the resources used by the system in
the case of the MEP transport protocol, as it requires less mem-
ory usage. The complete frame (header and physics data) is
indeed cut while it flows out from the MEP core, as shown in
Figure 5, so the IP core input frame length is always lower than
the maximum size. The IP core requires however a few more
signals to manage the fact that the incoming frame IP headers
need to have consistent information.

In the case of the incoming TCP integration, we will man-
age the IP fragmentation in the output of the TCP core. Then
we will need one more IP module, dedicated to the reception of
data. These data will mainly consist in TCP acknowledgement
packets. Indeed receiving data, even small packets, requires to
implement the IP reassembly.

Our network architecture will use, for each protocol, one
core dedicated to sending data and one core dedicated to receiv-
ing data.

Figure 5: Processing Unit of the MEP core, with the fragmentation
module.

B. Storage access

The FPGA injector device cannot store a large amount of
physics data. In order to address our requirements, it has to read
data from an external storage system. Mainly two options were
studied:

• Access to a hard drive disk via the PCI interface.

• Access to a remote storage system via the protocol
iSCSI [15].

The most scalable, interesting and challenging solution is
the iSCSI implementation. Though it is currently provided by
many industrial company for FPGA-based storage acceleration
solutions, open source IP cores are not available yet. Its imple-
mentation calls for a quite a few time resources.

Here we would use it to access to a raw partition of our stor-
age system, which would contain simulated physics events in a
raw format. This partition would not be interpreted by a filesys-
tem but would store directly the data.

C. Trigger and Control System

The hardware injector is triggered the same way as a normal
Readout Board. It is receiving this trigger and all associated in-
formation via a TTC optic signal. This signal is encoded on a
double channel, one is the proper trigger telling if the event is
accepted. The other one is used to distribute information rela-
tive to the LHCb DAQ, as for example the destination HLT farm
node, and information about the trigger. These information are
required to write the IP and the MEP headers.

There are basically two ways to implement the reception of
this signal. The first one is to interface directly a PIN diode. The

527



other one is to use a TTCRx board [16].
This part is very important for the integration of the injection

device in the control system, whereas it is not for preliminary
tests. We can simulate the trigger information. This part relies
on emulation, before to be implemented.

Nevertheless the selected solution is currently to interface
the TTCRx board. It requires the design of a routing daugh-
ter board which would convert the TTCRx interface with the
HSMC of the development board.

IV. CONCLUSION

This project is still very young. It is integrated into the up-
grade of the LHCb detector, more particularly in the upgrade of
the Online Data Acquisition system.

For the first few months of development, we focused on the
implementation of the networking layer. So far we have the net-
work architecture for data transmission in the MEP protocol.
Though simulation is correct, it is required to carry out real per-
formance tests in order to validate this design. The integration in
the control system and the storage access layer implementation
will follow shortly after.

ACKNOWLEDGMENTS

This research project has been supported by a Marie Curie
Initial Training Network Fellowship of the European Commu-
nity’s Seventh Framework Programme under contract number
(PITN-GA-2008-211801-ACEOLE)

REFERENCES

[1] The LHCb Collaboration, A Augusto Alves Jr et al., The
LHCb Detector at the LHC, JINST 3 S08005 (2008).

[2] J. Garnier et al., High-Speed Data-Injection for Data-Flow
Verification in LHCb, 16th IEEE Real Time (2009).

[3] M. Cattaneo, LHCb Full Experiment System Test, CHEP
(2009).

[4] LHCb HLT homepage, http://lhcb-trig.web.cern.ch/lhcb-
trig/HLT.

[5] P. R. Barbosa-Marinho et al., LHCb Technical Design Re-
port, CERN/LHCC/2001-040 (2001).

[6] A. Bay et al., The LHCb DAQ interface board TELL1,
Nucl. Instrum. and Methods A560 (2006) 494.

[7] Information Sciences Institute, University of Southern
California, RFC791 - Internet Protocol.

[8] LHCb TFC homepage, http://cern.ch/lhcb-online/TFC.

[9] LHCb ECS homepage, http://cern.ch/lhcb-online/ecs.

[10] B. Jost, N. Neufeld, Raw-data Transport Format, EDMS
499933.

[11] Information Sciences Institute, University of Southern
California, RFC793 - Transmission Control Protocol.

[12] Domenico Galli et al., Performance of 10 Gigabit Ether-
net Using Commodity Hardware, 16th IEEE Real Time
(2009).

[13] B.Taylor, Timing Distribution at the LHC, 8th Workshop
on Electronics for LHC Experiments (2002).

[14] J. Postel, RFC768 - User Datagram Protocol.

[15] J. Satran et al., Internet Small Computer Systems Interface
(iSCSI) (2004).

[16] J. Christiansen et al., TTCrx Reference Manual (2004).

528




