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High Performance Event-Building in Linux for LHCb
Benjamin Gaidioz, Member, IEEE, Artur Barczyk, Niko Neufeld, and Beat Jost

Abstract—The LHCb experiment event-building is performed
over a Gigabit Ethernet switched network. One specific step of
event-building is implemented by a software running on a gateway
PC whose role is to gather data packets from data sources, rebuild
events and forward them to computing nodes for running trigger
algorithms. In this article, we concentrate on the implementation
of this component on a Linux system. While implementing the soft-
ware, we made thorough studies of the kernel and profiled applica-
tions, leading to significant performance improvement. More im-
portantly, these studies allowed us to also gain in terms of pre-
dictability thanks to a good understanding of the whole system. In
this article, we use this application to illustrate possible improve-
ments to system software for data acquisition. We describe in detail
implementation choices and related operating system kernel code.
These techniques and observations are generic enough to be ap-
plied to other similar systems.

Index Terms—Data acquisition network, event-building, gigabit
ethernet, linux kernel network stack.

I. INTRODUCTION

THE LHCb experiment ([1] chap. 1) event-builder network
is implemented on top of a Gigabit Ethernet layer (see [1,

chap. 1] and Fig. 1). The main task of the system is to trans-
port raw data fragments belonging to a specific event to com-
puting nodes for trigger processing. Fragments belonging to an
event are read in parallel by a set of front-end electronic devices,
which send the data simultaneously on the network. Due to the
rather small size of fragments (see below), it has been decided
that front-end would actually pack fragments per frame.
This permits to make good use of the network and more impor-
tantly to minimise the frame rate.

The signal which triggers all front-end to send data embeds
the IP address of one of the gateways sitting on the other side
of the network. This permits all packets containing a fragment
of the same event to be sent to a common gateway. A gateway
reassembles fragments into events and forwards them to com-
puting nodes. Each gateway is responsible for distributing data
to a set of computing nodes called a subfarm.

There are two independent flows carried over the same links
and handled by the same gateways: “L1” (level 1) and “HLT”
(high level trigger). The value of (the packing factor, number
of fragments packed in a data packet) differs according to the
type of flow. It is set as a function of the average fragment size
in order to obtain frames of about 1 kB: L1 packets contain 25
fragments (average size of 32 B, 126 sources, event size is 4.5
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Fig. 1. LHCb data acquisition network. Data are sent by data sources (top), go
through the switched network and are received by gateways (bottom). Events
are then distributed by gateways to the associated computing nodes.

kB) and HLT packets contain 10 fragments (average size of 100
B, 323 sources, event size of 30 kB).

A gateway has to process frames in real-time at the rate the
set of front-end electronic devices send them (it does not request
the data). Although the system does not have hard real-time con-
straints, it has soft latency constraints for the L1 dataflow. Im-
plementation of the this step of event-building requires proper
design and benchmarks so that we can have an accurate mea-
surement of the rate a gateway can handle. Having a high per-
formance gateway permits us to minimise the number of hosts
and increase the size of a subfarm.

Performance of this application is critical and has been the
topic of studies we present here. We target both high perfor-
mance and high predictability. High performance permits to
handle a high data load, high predictability means that we can
safely ensure we will not encounter from time to time a perfor-
mance drop due to some unexpected mechanism in the whole
system. The secondary goal of the implementation is efficient
link usage. Link usage should be high (gateways handle effi-
ciently a data rate close to a multiple of link-speed).

The aim of this article is to describe several technical details
about the implementation of event-building in the gateways. We
will go through specific steps one by one and explain what our
studies have shown and how we could improve performance
and/or predictability of the application.

In Section II, we describe the software and hardware used in
this study. In Section III, we describe implementation details
of the operating system as well as implementation choices of
the application and give performance results. Section IV is ded-
icated to system settings which showed to be useful while not
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always well documented. We give final performance results in
Section V and conclude in Section VI.

II. OPERATING SYSTEM AND HARDWARE

In this section, we describe the operating system, hardware
and profiling tools we use in this study.

A. Operating System

Our application is running on a Linux based system (Redhat).
This distribution comes with a 2.4 kernel but we have installed
a vanilla 2.6.11 kernel. Redhat kernel is a specific version of
Linux which includes 2.6.x features backported to 2.4 and some
features which Redhat wanted to be implemented. We preferred
to use the standard kernel in order to benefit from its wide doc-
umentation.

Linux is an interesting choice for high-performance data ac-
quisition software.

• It is a known fact that the Linux kernel shows good per-
formance of network stacks and has many nice system fea-
tures available (very flexible kernel tuning with the /proc
file system, optional strict prioritising of processes, CPU
affinity of interrupts and processes, etc.).

• The kernel is open source (see [2]). Users can access
source code of the operating system kernel in order to
study the implementation of system calls, understand
properly the semantic of various operations, implementa-
tion details, etc.

• The kernel source code can be publicly discussed (see for
example [3]). Because of its popularity, this makes the soft-
ware widely documented. Many mailing-lists are dedicated
to discussions related to the Linux kernel.

All these points are very important when doing system and net-
work programming. As the rest of the article shows, it is im-
portant to not neglect study of the operating system source code
when doing system programming.

Operating system studies were greatly helped by the LXR
source code cross reference system [2].

B. Hardware

The hardware used in this study consists in:
• a dual AMD Opteron 2.2 GHz host which is used as a

gateway;
• two Intel based NIC 82546 EB controller) which receive

data packets of both L1 and HLT (merged, with sets of
packets being distributed over the two ports in a round
robin way);

• two Broadcom based NIC (BCM5704 controller) which
are used to forward built events to the subfarm.

Input traffic is emulated with a fine accuracy by a network pro-
cessor [4]. Fragments are of fixed size (average values given
above). Farm nodes are emulated by two high performance hosts
(one similar Opteron based host and one Itanium based host).

C. Profiling Tools

Profiling information provided in this article were obtained
with the oprofile profiling tool [5]. This tool operates as fol-
lows. Upon raise of a specific non-maskable interrupt (NMI),

a kernel module samples the location the program counter is
at. This permits to know very accurately in which function of
any executable (including the operating system itself) the CPU
spends time. If sampling at rather low rate, the overhead of pro-
filing is very low.

Non-maskable interrupts which can be selected to trigger
sampling can be related to many CPU or memory access related
events (see the oprofile documentation [5, see ‘Docs’] for
details on each supported architecture). We profile CPU usage
by sampling the program counter when the CPU is “not halted”.

The single drawback of these measurements is that they do
not report idle cycles like usual CPU load tools (top, mpstat)
because the CPU is halted during these cycles and the NMI is
never raised. Thus, the absolute costs are not easy to derive from
oprofile measurements; it is not obvious to compare two sets of
measurements.

• To a certain extent, values can be “normalised” by scaling
them down by the overall CPU load (measured with mp-
stat).

• An other solution consists in identifying a function which
cost remains in principle the same in both cases. The costs
shown by oprofile differ because the overall loads are not
the same but samples can be normalised, assuming the cost
of the function is in reality the same.

We believe in fact both solutions are inaccurate. However,
as we will see in this article, oprofile gives a good idea of the
relative cost of parts of code against others which is of great
help for optimisation.

III. IMPLEMENTATION DETAILS

In this section, we describe specific implementation details of
the application with details of the implementation of the kernel
of the operating system.

A. Architecture of the implementation on SMP

It is important for the application to benefit from SMP sys-
tems. We have compared two different architectures for the soft-
ware.

1) Producer and consumer running on their own CUP:
Event-building is well described as collaboration of two tasks.
One consists in receiving data packets from front-end elec-
tronics, checking their content, ordering them, etc.; the other
consists in managing computing nodes, sending the built events,
gathering L1 decisions. This leads to a very well specified de-
sign for dual CPU hosts where each CPU runs one of these
specific tasks.

If handling data as sets of events, the single critical section are
two shared queues in which sets are enqueued by the receiver
CPU once all packets of a set have been received, and from
which they are dequeued for distribution by the sender CPU. By
making this queue a queue of sets of events, we lower the rate
at which both CPU have to acquire and release locks around it.
Only at the frequency a full set of data packets is received, the
lock is taken and released by both sides.

This implementation permits to handle an input rate of about
1.35 Gb/s (measurement 1 on Table V).

2) Single Threaded Processing Running on Both CPUs: An
other solution is to implement a single threaded version of the
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TABLE I
IMPACT OF THE IMPLEMENTATION ARCHITECTURE

software, where the same thread of execution takes care of re-
ceiving data packets and sending events to computing nodes
once data is ready. This thread can be replicated on each CPU,
assuming the data sources distribute sets of packets in a round-
robin way to CPU.

In this implementation, both threads handle their own sets of
packets but still interact by sharing a common list of computing
nodes rather than handling each a half of them. In terms of in-
teraction in the code, the locks are taken more often (twice for
each event produced instead of twice per each set of events pro-
duced).

This implementation permits to handle an input rate of about
1.63 Gb/s (measurement 2 on Table V).

3) Conclusion: Impact of the implementation architecture is
summarized on Table I.

We see a very big improvement of the performance when
using the single threaded application.

On one hand, this is what one expects when separating the
tasks as we did. On the other hand, the improvement is partic-
ularly impressive, which we have seen on Opteron based SMP
hosts only. This comes probably from the specific NUMA ar-
chitecture where each CPU has a privileged access to a specific
half of the RAM and uses a longer data path for accessing the
other half.

The application has a larger probability of benefiting from
CPU cache in the single threaded implementation because data
fragments stay on the same CPU.

Another good feature of this implementation is load bal-
ancing. Assuming the overall data size received by each CPU
is the same, the CPU load is the same on both.

B. Memory Management

Our application makes heavy use of memory for buffer man-
agement. In this section, we explain how and why performance
of buffer management can be improved.

The application receives and buffers data packets in memory
until the full set has been received and then prepares built
events for sending. Later, after this full set of events has been
computed, memory is freed. In normal operation, this leads the
memory usage of the process to vary a lot.

The standard way to implement memory management is to
rely on the C [6] functions: malloc, free, etc. We have also
tried to implement a simple straightforward buffer management
in the application itself.

The profile of the calling sequence to memory management
functions in the application is the following. The application al-
locates (malloc) a large sized memory chunk in order to receive
a possibly large IP packet. Then it reallocates the chunk to its real
(smaller) size (realloc). Later, after all events have been sent, it
frees (free) the memory chunk. Calls to realloc actually do not
move data to a smaller location but rather update the descriptor
of the area to reflect its new length, so, they are not CPU con-
suming.

TABLE II
IMPACT OF MEMORY MANAGEMENT

1) Stdlib Implementation: Memory management in
is a general purpose implementation [7]. It is meant to provide
memory management routines for variable sizes, implements
optimisation of memory usage and error checking. Proper gen-
eral purpose memory management is definitely a complicated
question.

According to the needs of the process it is linked with, the
library dynamically requests memory to the operating system
with calls to brk and sbrk. For optimisation purposes, it requests
large memory chunks in which it implements a local memory
management on following calls to malloc and free. The appli-
cation can handle 1.63 Gb/s with this implementation.

2) Application Level Implementation: The purpose of doing
a specific memory management system is to make it more fitting
the application. We do memory management inside a large area
of memory allocated at load time with a single call to malloc.

In terms of memory consumption, this implementation is def-
initely less optimal than what the does: we allocate data
by going forward in the large memory area. When the end is
reached, we come back to the beginning which we expect to
have been freed already since a long time. Although this is
checked for safety, we can ensure this because in the specific
case of our application, we know we do not want to buffer
data so long that the full memory would be used (the size of
the memory area is sufficiently large). The application should
have failed before because of timeouts for example, or raised an
alarm. In normal mode, the memory is not overflowed.

In terms of management, the implementation is very simple.
It uses a next packet pointer which points to the “not yet allo-
cated byte” of the large array. Our malloc implementation is a
macro which simply expands to next packet (a pointer to a valid
area to copy bytes). Data is received here. Once the recv call re-
turns, the bytes are in the buffer and the length is known. The
realloc call simply moves next packet forward after the newly
received packet. It is ready for the next call to malloc. The free
call does nothing.

The application can handle 1.71 Gb/s with this implementa-
tion.

3) Conclusion: Impact of memory management is summa-
rized in Table II.

We can reach a higher rate using a specific buffer manage-
ment.

Careful look at profiling data tells us that the main reason for
getting a slightly lower performance when using the is
that the operating system is quite often asked for new memory
pages and given empty pages back by the application. Because
it allocates bytes for many packets and frees them all at high
frequency and because the is a system friendly library,
memory pages are given back when the process seems to not
need them anymore. In the specific case of our application,
pages are given back when packets are freed and unfortunately
requested right after. A change to could help in not
giving back memory so often.
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Fig. 2. Profiling of the system with stdlib memory management. One can see
the cost of zeroing memory pages (clear page).

Interestingly, when using the , apart code related to
page allocation in the kernel, many CPU cycles are lost in the
operating system in zeroing memory pages before they are re-
turned to the process (see Fig. 2, calls to clear pages). This func-
tionality of providing zeroed pages is mandatory in a multi-user
operating system where it is not wanted that other applications
can reuse your physical memory pages without having their con-
tent erased. In a setup dedicated to data acquisition, this fea-
ture is not needed. Disabling it would obviously improve per-
formance.

We have chosen to use the custom memory management be-
cause it is simpler to maintain. Also, since we do not interact
with the system dynamically, this implementation has a better
predictability (usual cost of malloc or free will never suddenly
increase because of an internal call to system calls to request
more memory for example).

C. Socket Interface

Our application uses raw sockets for communication. Data
packets are received directly in a buffer. Built events are pre-
pared by the application in a specific way so that they can be sent
to a computing node, using the socket interface again. Prepara-
tion is needed because events are received as a set of many little
data fragments belonging to different packets. They need to be
gathered in a message at some point, this is discussed in this
section.

1) Software Scatter-Gather by the Operating System: An im-
plementation which is usually advised consists in avoiding the
application to prepare internally the message by asking the op-
erating system to do it itself. Indeed, for optimisation purposes,
many I/O calls can take as a parameter a list of chunks of data
(in an iovec array) to pack them together. The operating system
copies them one by one directly into its contiguous buffer. Later
on, the network card downloads this packet via a DMA and
sends it (this copy is of no cost from the CPU point of view).

This implementation saves a copy because the application
does not need to fully prepare the message. It permits to handle
1.71 Gb/s of data (measurement 3 on Table V).

When profiling the system at high rate, one notices a rather
long time spent by the operating system in doing memory
copies (see Fig. 3). This led us to have a closer look to the
implementation of the software scatter-gather in Linux. A
good starting point is the sendmsg implementation of raw
sockets net/ipv4/raw.c, line 374) which refers to

Fig. 3. Profiling of the system with custom memory management and system
scatter-gather. The copy user generic function is the one copying data from a
user space buffer to a kernel buffer (or the opposite). Various csum � functions
are used to build fragmented IP packets with computation of the checksum per-
formed during the memory copy.

ip_generic_getfrag (net/ipv4/ip_output.c, line 672
and memory copy functions referenced in there) for copying
fragments.

• The loop over the long arrays we are passing to the system
call triggers a call to a specific implementation of memcpy
(called copy user generic, see Fig. 3). This function is not
inlined in the loop.

• The copy user generic function is a specific implementa-
tion meant to copy data from user-space (or to user-space).
The point of this function is to perform some access right
checking before doing the copy. This checking occurs at
the beginning of each call, that is to say, for each one of
the hundreds of little fragments that are copied. We ex-
plain below that the operating system does it in software,
which makes this operation of high overhead compared to
the memory copy.

All these operations occur for each data fragment we want to
send. It lead to a lot of side processing compared to the actual
cost of copying all short fragments.

One would have expected that pointer validity checks are per-
formed for free by the MMU whether the address belongs to
user space or not. This is the case unless when the process is
issuing a system call. Indeed, in a system call, the process auto-
matically gets kernel privileges. That is to say, when it passes a
pointer as a parameter to a system call, for example for sending
data stored at a location pointed to, the MMU would not fault
if the pointer points to a location private to the kernel (because
it is temporarily mapped in the process memory). In this spe-
cific case, the process can trigger parts of the kernel memory
to be copied to an Ethernet frame and sent remotely, which is
a security hole. The same can be applied to erase parts of the
kernel memory with a recv call to a kernel location. Providing a
“hardware-valid” address (mapped) which points in the kernel
space instead of the user space memory is indeed a fault. Unfor-
tunately, checks have to be performed in software.

The next sections show how to avoid this overhead without
loosing in security.

2) Message Building in User-Space: A possible solution to
the previous problem noticed of the implementation of soft-
ware scatter-gather in the operating system is to modify the raw
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TABLE III
IMPACT OF MESSAGE BUILDING.

socket implementation to simply don’t do these checks and in-
line the memcpy function. We have tried a slightly more sophis-
ticated implementation where we benefit from the checks by the
MMU.

We have tried an implementation of user-space message
building with the standard memcpy and an optimised inline
function. Although we avoid the overhead of software checks
identified in the previous section, this implementation unfortu-
nately needs one more copy so that the data is moved to kernel
space (implemented by the send system call). In this case,
software checking is much less visible (we copy entire frames).

• memcpy: The memcpy function is both general purpose and
optimised. This means, at the beginning of each call, it
checks the length, alignments, etc., and chooses an efficient
algorithm. In the application, memory copies are needed
for rather small chunks (fragment size) and the overhead
of memcpy is significant.

• inline assembly memory copy: Since we are aware of some
properties of the data alignment, we implement a straight
inlined assembly memory copy function specific to it (as
explained in [8, p. 118]).

Impact of message building is summarized on Table III. The
memcpy based implementation reduces the performance of
the system to 1.63 Gb/s (measurement 4 on Table V). This is
due to the extra copy we need to do with the send system call
to copy frames to a kernel buffer for sending. The optimised
memory copy based implementation helps and brings it to
1.71 Gb/s. This is the same performance we obtain with the
operating system scatter-gather. One should however note
that we have introduced an extra memory copy. This means
the overhead of software access right checks and memcpy are
roughly equivalent to the cost of one more memory copy of our
data (measurement 5 on Table V).

In the next section, we explain how skip the extra copy, using
memory mapped Ethernet frames.

D. Zero-Copy Sending

Because we have added a memory copy in the last step, we
implement a kernel extension to avoid it.

We have implemented a “zero-copy sending” packet socket as
a kernel module. We started with the Linux packet socket im-
plementation (net/packet/af packet.c). It is relatively simple be-
cause it already provides an mmap implementation. The mmap
call is meant for different use but is very practical to start from.

The mmap implementation of this socket type allocates
memory pages in kernel space and map them to the user process
memory space. After this call, the process has read/write access
to an memory area which is in the kernel. We use this mmap
call to replace the call to malloc which we use to allocate
memory for frame preparation. When preparing a frame, the
data is copied with the fast inline memory copy function in
these buffers.

TABLE IV
IMPACT OF SAVING A COPY TO KERNEL SPACE

Fig. 4. Profiling of the system with zero-copy sending (high rate). The event-
builder share is very high because it includes memory copies in user-space. Calls
to copy user generic comes from the receive side of the application.

TABLE V
PERFORMANCE SUMMARY

Normally, when sending data, the kernel allocates a buffer
and copies data into it. This buffer is added to the packet de-
scriptor as a DMA fragment and the packet descriptor is given
by the device driver to the NIC. Later, the NIC will download
the data from the address specified via DMA.

In the implementation of sendmsg for this socket type, we
check if the packet is a preallocated one or not. If yes, we
simply skip the buffer allocation and memory copy and queue
the packet for sending.

This saves quite a lot of CPU and the application can handle
an input rate of 1.95 Gb/s (measurement 6 on Table V). (We did
not try more because we are too close to the maximum rate one
can get with packets of 1 kB and two links.)

Impact of saving a copy to kernel space is summarized on
Table IV. Fig. 4 shows the profiling results for this implemen-
tation.

E. Kernel Module for Receiving Raw Data Packets

The data we receive is stored in plain IP v4 packets. In this
section, we show a bit of the system implementation when re-
ceiving IP packets and explain how to improve the performance
with a specific kernel module.

In operating systems, network stacks are organised as collab-
orative layers of different levels. Here, the bottom one is inter-
faced to the NIC driver (in our case, Ethernet). The one above
is the network layer, on top of which comes the transport layer
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(TCP, UDP). User level processes are supposed to use the inter-
face provided by the transport layer.

Since in our system the data are pushed from front-end elec-
tronics to gateways, the natural transport layer would have been
UDP. In order to save processing and bytes, data are however
carried in raw IP packets.

Operating systems provide interfaces to user processes to any
layer of the network stack by means of raw sockets. They are
however accessible only to processes with administrator privi-
leges. We use such raw socket to access data packets from the
gateway.

In theory, the purpose of a raw socket is to implement a
“system network layer” in user-space. It can also be used for
“spying” network traffic. For example, by opening a raw IP

socket to IP protocol corresponding to TCP, one can read all
TCP packets. By opening a raw packet (Ethernet) socket to
packet type 0x800, one can read all IP packets.

The semantic of raw sockets is such that several identical
sockets can be opened on the same host and they all get a copy
of the packet. Also, if a standard kernel layer is registered for
the same type of packet, it gets the packet as well. In our case,
we use a non-standard IP protocol. The kernel has no handler for
this type of packet.

When receiving a data packet (net/ipv4/ip input.
c199), the kernel loops over the list of raw sockets which
are registered for the packet protocol, clones the packet de-
scriptor, enqueues the packet to the socket queue and continues
(net/ipv4/raw.c, line 153). At the end of the loop, it
looks for a kernel registered handler and if one, passes the
original packet descriptor to it.

In our specific case, the packet descriptor is cloned, the
clone is given to the raw socket the process owns. Packet
descriptor cloning is a non-negligible operation (see skb clone,
net/core/skbuff.c, line 326). It requires a new de-
scriptor to be allocated (memory management) and many fields
to be copied. Packet content is however shared.

After the cloned descriptor is delivered to the raw socket
the application owns, the original packet descriptor is dropped
because there is no kernel registered protocol for it. This is
also of some cost because of calls to memory management
routines.

A possible solution to avoid this pointless processing is to im-
plement and register a kernel handler for this protocol and pro-
vide to user programs a transport level interface to it. If packets
are handled by a dedicated protocol, no raw socket is open and
packet descriptors are not cloned at all. What the module has to
provide is a service similar to the raw socket level (just copying
the raw packet) while it is registered as a transport level pro-
tocol.

If is good to know this operation of duplicating packet
descriptors is different in the code related to raw packet socket
(Ethernet). Here descriptors are cloned only when they ap-
pear to have been already enqueued to a different socket (see
net/packet/af packet.c, line 486). In case one socket
is open, descriptors are not cloned. LHCb event-building relies
on the operating system to implement IP reassembly [9, p. 24]
IP, which forbids us to build the application on top of Ethernet
packet sockets.

Fig. 5. Profiling of the Linux kernel executable when receiving data with a
plain raw IP socket. Packet descriptors are cloned (copied) and destroyed after-
wards, due to an implementation detail of the stack.

We show below details on the implementation of a specific
transport protocol module.

A good starting point to implement it is the UDP protocol
implementation (net/ipv4/udp.c) which is very similar to what
we want. It should then be “modularised” to be inserted as a
kernel service after boot time.

We implement and register a custom transport protocol
module as a handler for packets of the DAQ. This leads to a
new socket family (called “ ”) which provides a ser-
vice for getting raw IP packets matching a specific IP protocol
number. Another advantage of implementing a module is also
that one has the opportunity to export statistics measured in the
kernel for the specific type of packet we handle. With standard
raw sockets, one get only a summary of statistics for all IP

interfaces, which can be not satisfying for accurate monitoring.
For ease of readability of the profiling information, we run

event-building as a simple packet receiver (data is discarded af-
terwards) so that cost of the IP stack in sending does not inter-
fere. Although data rate is of the order of what would come from
the DAQ (1.71 Gb/s), the overall CPU load is much lower than
in settings where the whole event-building runs.

Fig. 5 shows the profiling information of the kernel ex-
ecutable when using a standard raw socket. One sees the
calls to skb clone and the cost of memory management due
to useless packet descriptor cloning and dropping (calls to
kmem cache alloc and kmem cache free). The CPU load is
about 39.5% in this configuration. Fig. 6 shows values in case
we use the dedicated kernel module. There is no more packet
descriptor cloning and the overhead of memory management is
low. The CPU load is 35.5% (remember it is low because we
disable event forwarding to the subfarm).

As it has been explained in Section II-C, the graphs show the
relative cost of kernel functions with each other. The fact that
Fig. 6 shows a higher cost in memory copies is due to the fact
these values are scaled up, since the outside idle time is higher.

IV. SYSTEM SETTINGS

This section is dedicated to side-effects of various system set-
tings which we found useful to keep control on.
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Fig. 6. Profiling of the Linux kernel executable when receiving data with a
dedicated kernel module (to be compared with Fig. 5). “Redundant” packet de-
scriptors cloning is not taking place anymore, which lowers memory manage-
ment overhead.

A. Interrupts Coalescing

When reaching 2 Gb/s, the host handles a frame rate of about
250 Kfps. Fortunately, this does not lead to the same interrupt
rate, which it could not handle. Modern interfaces have a func-
tionality of interrupt coalescing [10, page 4] such that the inter-
rupt rate is low. The NICS we are using both have this feature
implemented. Although frame rate is about 250 Kfps, interrupt
rate is 20 kHz.

This measured value of 20 kHz could be a direct effect of
hardware interrupt coalescing settings. In fact, interrupt coa-
lescing interacts a lot with a similar software feature imple-
mented in the network stack of Linux which itself also disables
interrupts to prevent denial of service in case of high network
load. This feature comes with the NAPI [11] network stack im-
plementation available in 2.6 kernels.

The interrupt rate is kept low thanks to the combination of
these both functionalities.

B. CPU Affinity

The Redhat Linux distribution we use comes with a daemon
called irqbalance which periodically recompute a good inter-
rupt affinity setting. This is supposed to dynamically balance
the load of interrupt handling between the different CPU of the
host. However this periodic reconfiguration is very coarse-grain
and appears to be inefficient under traffic pattern like ours. We
have experienced that it leads to a more predictable and better
performance to disable it and set affinity statically ourselves.
Each CPU handles one receiving NIC and one sending NIC.

C. Strict Priority Scheduling

Strict priority scheduling is a feature of 2.6 kernels. The
sched setscheduler call permits to select a scheduling priority
such that the process will always be considered first by the
scheduler. This is not of significant improvement in perfor-
mance of the application because it has effect only when the CPU

is a lot loaded. Actually, this is more in terms of predictability
of the performance that this setting helps. This ensures that the
process will not be scheduled behind some daemon running on
the host.

Fig. 7. Profiling of the Linux kernel executable when using a standard MTU

(1.5 kB) for receiving packets.

Fig. 8. Profiling of the Linux kernel executable when using an MTU of 4 kB
and a lower frame rate for receiving packets.

D. Usage of a Larger MTU

In this section, we show profiling information of the kernel
when using a standard or a large MTU (1.5 or 4 kB) for the in-
coming traffic, with similar data rates in both cases.

It is usually a good idea to use large packets in network trans-
fers. In the specific case of the LHCb data acquisition network,
due to delay constraints, we cannot increase so much the number
of fragments per frame. In Section V we increase the settings to
32 L1 fragments (L1 has the highest frame rate) while we could
in principle pack much more.

We anyway collected some profiling information for different
sizes of MTU (with a corresponding packet size). In order to
better illustrate the overhead of packet handling for different
MTU and frame rate, we again run the event-builder as a simple
receiver (like we did in Section III-E). Profiling information
shown on Figs. 7 and 8 related to the kernel executable only.
Fig. 7 shows the measurements when using 1 kB packets with
an MTU of 1.5 kB (packing factors are 25 and 10). Fig. 7 shows
measurements when an MTU of 4 kB is used and packing factors
are artificially increased in order the whole data to fit in the MTU.
Byte rates are similar in both cases, that is to say 1.71 Gb/s.

Usage of such a large MTU saves 24% of CPU. Figs. 7
and 8 permit to see that the relative cost of packet handling
( , etc.) compared
to memory copy cost ( ) is much lower in
the case of large MTU.

There is no real surprise here but the relative costs are inter-
esting to look at.
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Fig. 9. Profiling of the Linux kernel executable when timestamps of packets is
enabled, due to a process using the SO TIMESTAMP socket option. Both functions
do gettimeoffset tsc and do gettimeofday are involved in the timestamp.

Fig. 10. Profiling of the Linux kernel executable when timestamps of packets is
disabled. None of the functions do gettimeoffset tsc and do gettimeofday appear
in the profiling information.

E. Socket Options

It is now a known advice to set up the operating system to
allow large socket buffers so that many packets can be buffered
in the system queue in case the application is busy.

We would like to insist on a socket option which is not of
any use to the application. The option permits a
process to specify to the system it would like to have its packets
timestamped when they are received. Then, an other system call
permits to get the timestamp of the last packet read by the ap-
plication. It is used by ping, for example.

For accuracy purposes, the timestamp is taken by the oper-
ating system at the very beginning of the processing of a frame
by the system, close to the interrupt handler. At this level, the
kernel does not yet know if the destination is interested by the
timestamp since it has not yet routed the packet. So, as long as
a process in the whole system requests this timestamp (a global
variable called netstamp needed, see net/core/dev.c, line
1006), a timestamp is taken for any packet received by the
system (net/core/dev.c, line 1438).

Figs. 9 and 10 illustrate the cost of taking timestamps (or not)
for each packet entering the host. We show here profiling infor-
mation of the kernel executable only. In order to ease profiling
information readability, we run the event-builder as a simple
packet receiver one more time. Received data rate is 1.71 Gb/s
and no data is forwarded to computing nodes.

Both functions do gettimeofday and do gettimeoffset tsc
(Opteron specific) are involved in taking timestamps for each
packet.

Since this operation of taking timestamps is of non negligible
cost, it is a good idea to identify the processes using this option
and see how to get around them.

V. PERFORMANCE OF THE FULL IMPLEMENTATION

In tests shown in this article, we have disabled some of the
mechanisms of the application in order to permit a simpler study
of the performance. Sometimes, event forwarding itself was dis-
abled.

The full application includes event forwarding of course, but
also L1 decisions handling. L1 decisions are packets sent back
by computing nodes after their computation is over, which leads
the gateway to push an other event.

If including this traffic back with the implementation
described in Section III-D (zero-copy, (measurement on
Table V)), the rate drops from 1.95 Gb/s to 1.77 Gb/s (measure-
ment on the Table V). This is due to a higher interrupt rate
and more interaction between the two CPU.

By increasing the MTU of the network on the sending side to
4 kB, the overall load decreases and the host is able to handle up
to 1.87 Gb/s (measurement on Table V). The performance im-
proves once more if increasing the packing factor of L1 packets
from 25 to 32 fragments. This new value still fits in time require-
ments of LHCb. This lowers the frame rate and leads to a better
use of the network. The rate reaches 1.95 Gb/s (measurement
on Table V).

VI. CONCLUSION

In this article, we describe the implementation of a system
application with critical performance goals (event-building in
LHCb). In particular, by collecting and analysing profiling in-
formation of the whole system (operating system and applica-
tion), we identify step by step several implementation details of
the operating systems or the application as bottlenecks (some-
times unexpected) and show how to circumvent them.

Throughout this article, we hope to illustrate how important
it is to not simply rely on the documentation and semantic of
system calls and settings, but that it is a mandatory step to dig
the kernel source code in order to understand the full path of
data. Indeed, as profiling results of Fig. 2 show, when running
at high rate, the CPU spends less than 10% of its cycles in the
application. There is no reason to assume the 90% other cycles
are not requiring some care and optimisation.

Predictability in data acquisition software is critical and
study of the operating system also helps in that purpose. The
behaviour of an application is largely influenced by the fact
the Linux operating system is general purpose and implements
various mechanisms to fairly share resources like CPU, memory,
etc. Many operations expected to have a simple and well defined
semantic (like system calls) will sometimes internally trigger
many complicated mechanisms, leading to a low predictability
of the application performance.
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Thanks to these observations and optimisations, the LHCb
event-building can be implemented with a low number of gate-
ways and efficient link usage (see Section I for more details).
This naturally increases the subfarm size per gateway, which
leads to statiscally more efficient system. Link usage also ap-
pears to improve because the maximum data rate grows from

1.35 to 1.95 Gb/s, which over two Gigabit Ethernet links is
very close to link speed. This means that although settings of
the experiment will target a lower average rate for safety, the
gateway will not fail in case of sudden peaks of throughput.

Although the study and the optimisations were done in the
specific context of the LHCb experiment, we believe all of them
can be taken into account in the context of any data acquisition
system built on top of IP/Ethernet and Linux.
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