50 research outputs found

    Qualitätstransparenz in der Hausarztmedizin: Ergebnisse der repräsentativen Befragung

    Full text link

    Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells

    Get PDF
    Objective: A major shortcoming in contemporary congenital heart surgery is the lack of viable replacement materials with the capacity of growth and regeneration. Here we focused on living autologous patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells (EPCs) as a ready-to-use cell source for paediatric cardiovascular tissue engineering. Methods: EPCs were isolated from 20ml fresh umbilical cord blood by density gradient centrifugation and myofibroblasts were harvested from umbilical cord tissue. Cells were differentiated and expanded in vitro using nutrient media containing growth factors. Before seeding, cell-phenotypes were assessed by immuno-histochemistry. Biodegradable patches fabricated from synthetic polymers (PGA/P4HB) were seeded with myofibroblasts followed by endothelialization with EPCs. All patches were cultured in a perfusion bioreactor. A subgroup of patches was additionally stimulated by cyclic strain. Analysis of the neo-tissues comprised histology, immuno-histochemistry, extracellular matrix (ECM) analysis and biomechanical testing. Results: Endothelial phenotypes of EPCs before seeding were confirmed by Ac-Dil-LDL, CD 31, von-Willebrand-Factor and eNOS staining. Histology of the seeded patches demonstrated layered viable tissue formation in all samples. The cells in the newly formed tissues expressed myofibroblast markers, such as desmin and alpha-SMA. The EPCs derived neo-endothelia showed constant endothelial phenotypes (CD 31, vWF). major constituents of ECM such as collagen and proteoglycans were biochemically detected. Stress-strain properties of the patches showed features of native-analogous tissues. Conclusions: Living tissue engineered patches can be successfully generated from human umbilical cord derived myofibroblasts and EPCs. This new cell source may enable the tissue engineering of versatile, living, autologous replacement materials for congenital cardiac intervention

    A hybrid polymer/ceramic/semiconductor fabrication platform for high-sensitivity fluid-compatible MEMS devices with sealed integrated electronics

    Full text link
    Active microelectromechanical systems can couple the nanomechanical domain with the electronic domain by integrating electronic sensing and actuation mechanisms into the micromechanical device. This enables very fast and sensitive measurements of force, acceleration, or the presence of biological analytes. In particular, strain sensors integrated onto MEMS cantilevers are widely used to transduce an applied force to an electrically measurable signal in applications like atomic force microscopy, mass sensing, or molecular detection. However, the high Young's moduli of traditional cantilever materials (silicon or silicon nitride) limit the thickness of the devices, and therefore the deflection sensitivity that can be obtained for a specific spring constant. Using softer materials such as polymers as the structural material of the MEMS device would overcome this problem. However, these materials are incompatible with high-temperature fabrication processes often required to fabricate high quality electronic strain sensors. We introduce a pioneering solution that seamlessly integrates the benefits of polymer MEMS technology with the remarkable sensitivity of strain sensors, even under high-temperature deposition conditions. Cantilevers made using this technology are inherently fluid compatible and have shown up to 6 times lower force noise than their conventional counterparts. We demonstrate the benefits and versatility of this polymer/ceramic/semiconductor multi-layer fabrication approach with the examples of self-sensing AFM cantilevers, and membrane surface stress sensors for biomolecule detection

    Evaluation of whole- genome sequence data analysis approaches for short- and long- read sequencing of Mycobacterium tuberculosis

    Get PDF
    Whole-genome sequencing (WGS) of Mycobacterium tuberculosis (MTB) isolates can be used to get an accurate diagnosis, to guide clinical decision making, to control tuberculosis (TB) and for outbreak investigations. We evaluated the performance of long-read (LR) and/or short-read (SR) sequencing for anti-TB drug-resistance prediction using the TBProfiler and Mykrobe tools, the fraction of genome recovery, assembly accuracies and the robustness of two typing approaches based on core-genome SNP (cgSNP) typing and core-genome multi-locus sequence typing (cgMLST). Most of the discrepancies between phenotypic drug-susceptibility testing (DST) and drug-resistance prediction were observed for the first-line drugs rifampicin, isoniazid, pyrazinamide and ethambutol, mainly with LR sequence data. Resistance prediction to second-line drugs made by both TBProfiler and Mykrobe tools with SR- and LR-sequence data were in complete agreement with phenotypic DST except for one isolate. The SR assemblies were more accurate than the LR assemblies, having significantly (P<0.05) fewer indels and mismatches per 100 kbp. However, the hybrid and LR assemblies had slightly higher genome fractions. For LR assemblies, Canu followed by Racon, and Medaka polishing was the most accurate approach. The cgSNP approach, based on either reads or assemblies, was more robust than the cgMLST approach, especially for LR sequence data. In conclusion, anti-TB drug-resistance prediction, particularly with only LR sequence data, remains challenging, especially for first-line drugs. In addition, SR assemblies appear more accurate than LR ones, and reproducible phylogeny can be achieved using cgSNP approaches

    Analysis of bi-atrial function using CMR feature tracking and long-axis shortening approaches in patients with diastolic dysfunction and atrial fibrillation.

    Get PDF
    OBJECTIVES Atrial function can be assessed using advancing cardiovascular magnetic resonance (CMR) post-processing methods: atrial feature tracking (FT) strain analysis or a long-axis shortening (LAS) technique. This study aimed to first compare the two FT and LAS techniques in healthy individuals and cardiovascular patients and then investigated how left (LA) and right atrial (RA) measurements are related to the severity of diastolic dysfunction or atrial fibrillation. METHODS Sixty healthy controls and 90 cardiovascular disease patients with coronary artery disease, heart failure, or atrial fibrillation, underwent CMR. LA and RA were analyzed for standard volumetry as well as for myocardial deformation using FT and LAS for the different functional phases (reservoir, conduit, booster). Additionally, ventricular shortening and valve excursion measurements were assessed with the LAS module. RESULTS The measurements for each of the LA and RA phases were correlated (p < 0.05) between the two approaches, with the highest correlation coefficients occurring in the reservoir phase (LA: r = 0.83, p < 0.01, RA: r = 0.66, p < 0.01). Both methods demonstrated reduced LA (FT: 26 ± 13% vs 48 ± 12%, LAS: 25 ± 11% vs 42 ± 8%, p < 0.01) and RA reservoir function (FT: 28 ± 15% vs 42 ± 15%, LAS: 27 ± 12% vs 42 ± 10%, p < 0.01) in patients compared to controls. Atrial LAS and FT decreased with diastolic dysfunction and atrial fibrillation. This mirrored ventricular dysfunction measurements. CONCLUSION Similar results were generated for bi-atrial function measurements between two CMR post-processing approaches of FT and LAS. Moreover, these methods allowed for the assessment of incremental deterioration of LA and RA function with increasing left ventricular diastolic dysfunction and atrial fibrillation. A CMR-based analysis of bi-atrial strain or shortening discriminates patients with early-stage diastolic dysfunction prior to the presence of compromised atrial and ventricular ejection fractions that occur with late-stage diastolic dysfunction and atrial fibrillation. KEY POINTS • Assessing right and left atrial function with CMR feature tracking or long-axis shortening techniques yields similar measurements and could potentially be used interchangeably based on the software capabilities of individual sites. • Atrial deformation and/or long-axis shortening allow for early detection of subtle atrial myopathy in diastolic dysfunction, even when atrial enlargement is not yet apparent. • Using a CMR-based analysis to understand the individual atrial-ventricular interaction in addition to tissue characteristics allows for a comprehensive interrogation of all four heart chambers. In patients, this could add clinically meaningful information and potentially allow for optimal therapies to be chosen to better target the dysfunction

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase&nbsp;1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation&nbsp;disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age&nbsp; 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score&nbsp; 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc&nbsp;= 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N&nbsp;= 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in&nbsp;Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in&nbsp;Asia&nbsp;and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    A new versatile hybrid MEMS technology for high sensitivity, fluid proof sensing applications.

    No full text
    The field of micro electromechanical systems (MEMS) evolved from the microelectronic industry and the technologies developed to fabricate integrated circuits. As a result, MEMS are commonly fabricated on silicon wafers. The development of MEMS has been driven by three main merits: miniaturisation, microelectronics integration, and parallel fabrication with high precision. Many operational properties scale well with smaller sizes. In addition, integrated electronic circuitry allows embedding MEMS with computing or networking capabilities, while parallel manufacturing enables the fabrication of many identical devices on a single wafer, reducing the unit cost. The main MEMS application is transducers which transform signals from one form of energy to another, and can be used for perception (sensors) or to produce actions (actuators). Silicon and other microelectronic materials like metals have enabled very high-performance MEMS transducers because these materials can be used for a range of very effective actuating and sensing principles. More recently, polymers have started to be used in MEMS because of their unique electrical, physical and chemical properties which include biocompatibility, viscoelasticity and mechanical shock tolerance. They are also much softer than silicon or metals, and they can be processed using many techniques that allow unique low-cost, batch-style fabrication and packaging. However, polymers have relatively low glass-transition and melting temperatures. As a result, the advantages of polymers cannot easily be combined with high-performance actuating and sensing elements as these are based on silicon technology and require high-temperature fabrication steps. Here, a hybrid-MEMS fabrication process is used to address this issue. The developed devices are based on a trilayer structure, where a thick polymer core is sandwiched between two hard thin films, while electronic layers are embedded within in a fluid-compatible way. The objective of this thesis is to turn hybrid-MEMS into a benchmark MEMS technology. This involves many different aspects. First, sensing and actuation elements are integrated into trilayer devices, and their performance is analysed. Then, some more unique possibilities offered by hybrid-MEMS are exploited. A way to fabricate electronics on multiple layers is developed, which allows different electronic features to be integrated in parallel. In addition, three-dimensional bulk features fabricated at several levels are demonstrated. This is possible because the hybrid-MEMS process is based on the bonding of multiple wafers. All these new fabrication features are demonstrated in atomic force microscopy (AFM) applications. Self-actuated trilayer AFM cantilevers with sharp silicon tips are used to boost imaging speeds in the off-resonance tapping (ORT) mode, thanks to an order of magnitude faster surface probing rates. Furthermore, fully integrated ORT imaging is demonstrated with self-actuated piezoresistive cantilevers. Next, trilayer cantilevers with shielded conductive tips are introduced for electrical AFM modes. Finally, ongoing research projects are touched upon, including approaches to fabricate hybrid-MEMS with single crystal silicon piezoresistors for improved sensitivity, and an analysis of reproducibility of fabricated trilayer cantilevers

    Oxidative Coupling of α,ω - Di(cyclopentadienyl)alkyl-diides

    No full text
    The CuII-induced oxidative coupling of α,ω-di(cyclopentadienyl)alkyl-diides 6 (n = 2 to 5) – as well as of 1,1,2,2-tetramethyl derivatives 10 and 13 of 6a (n = 2) – has been investigated in view of pertinent questions concerning the 'coupling mode' (e.g. intramolecular vs. intetmolecular coupling), as well as regioselectivity and stereoselectivity of the coupling reaction. As far as the 'coupling mode' is concerned, intermolecular coupling 6 ? 8 strongly dominates over intramolecular coupling 6 → 7 (Scheme 2) and the yields of intramolecular coupling products strongly decrease from 7% (7a, n = 2) to 1% (7b, n = 3) to traces (7c, 7d, n = 4,5). It is interesting to note that intramolecular coupling may be considerably enhanced by replacing the H-atoms of the CH2CH2 bridge of 6a (n = 2) by Me groups (see 10 → 11 and 13 →14 + 15, (Scheme 4). As far as regioselectivity is concerned, intramolecular coupling of 1,2-di(cyclopentadienyl)ethane-diides, 6a, 10, and 13, proceeds as a clean 2,2'-coupling of the cyclopentadiene rings within the limits of NMR identification. Furthermore, the couplings 6a → 7a and 10 → 11 (as well as 13 → 14 + 15) proceed stereoselectively to give the C2-symmetrical cyclohexanes 7a and 11 with a fixed chair conformation
    corecore