427 research outputs found

    Fracture mechanics approach to design analysis of notches, steps and internal cut-outs in planar components

    Get PDF
    A new approach to the assessment and optimization of geometric stress-concentrating features is proposed on the basis of the correspondence between sharp crack or corner stressfield intensity factors and conventional elastic stress concentration factors (SCFs) for radiused transitions. This approach complements the application of finite element analysis (FEA) and the use of standard SCF data from the literature. The method makes it possible to develop closed-form solutions for SCFs in cases where corresponding solutions for the sharp crack geometries exist. This is helpful in the context of design optimization. The analytical basis of the correspondence is shown, together with the limits on applicability where stress-free boundaries near the stress concentrating feature are present or adjacent features interact. Examples are given which compare parametric results derived from FEA with closed-form solutions based on the proposed method. New information is given on the stress state at a 90° corner or width step, where the magnitude of the stress field intensity is related to that of the corresponding crack geometry. This correspondence enables the user to extend further the application of crack-tip stress-field intensity information to square-cornered steps, external U-grooves, and internal cut-outs

    Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E) and McMurdo (78° S, 167° E)

    No full text
    International audienceThe extent of springtime Arctic ozone loss does not reach Antarctic "ozone hole" dimensions because of the generally higher temperatures in the northern hemisphere vortex and consequent less polar stratospheric cloud (PSC) particle surface for heterogeneous chlorine activation. Yet, with increasing greenhouse gases stratospheric temperatures are expected to further decrease. To infer if present Antarctic PSC occurrence can be applied to predict future Arctic PSC occurrence, lidar observations from McMurdo station (78° S, 167° E) and Ny-Ålesund (79° N, 12° E) have been analysed for the 9 winters between 1995 (1995/1996) and 2003 (2003/2004). Although the statistics may not completely cover the overall hemispheric PSC occurrence, the observations are considered to represent the main synoptic cloud features as both stations are mostly situated in the centre or at the inner edge of the vortex. Since the focus is set on the occurrence frequency of solid and liquid particles, the analysis has been restricted to volcanic aerosol free conditions. In McMurdo, by far the largest part of PSC observations is associated with PSC type Ia. The observed constant background of NAT particles and their potential ability to cause denoxification and irreversible denitrification is presumably more important to Antarctic ozone chemistry than the scarcely observed PSC type II. Meanwhile in Ny-Ålesund, PSC type II has never been observed, while type Ia and Ib both occur in large fraction. Although they are also found solely, the majority of observations reveals solid and liquid particle layers in the same profile. For the Ny-Ålesund measurements, the frequent occurrence of liquid PSC particles yields major significance in terms of ozone chemistry, as their chlorine activation rates are more efficient. The relationship between temperature, PSC formation, and denitrification is nonlinear and the McMurdo and Ny-Ålesund PSC observations imply that for predicted stratospheric cooling it is not possible to directly apply current Antarctic PSC occurrence directly to the Arctic stratosphere. Future Arctic PSC occurrence, and thus ozone loss, will depend on the shape and barotropy of the vortex rather than on the minimum temperatures

    Optical thickness and effective radius of Arctic boundary-layer clouds retrieved from airborne nadir and imaging spectrometry

    Get PDF
    Arctic boundary-layer clouds in the vicinity of Svalbard (78° N, 15° E) were observed with airborne remote sensing and in situ methods. The cloud optical thickness and the droplet effective radius are retrieved from spectral radiance data from the nadir spot (1.5°, 350–2100 nm) and from a nadir-centred image (40°, 400–1000 nm). Two approaches are used for the nadir retrieval, combining the signal from either two or five wavelengths. Two wavelengths are found to be sufficient for an accurate retrieval of the cloud optical thickness, while the retrieval of droplet effective radius is more sensitive to the number of wavelengths. Even with the comparison to in-situ data, it is not possible to definitely answer the question which method is better. This is due to unavoidable time delays between the in-situ measurements and the remote-sensing observations, and to the scarcity of vertical in-situ profiles within the cloud

    Optical Diagnostics on Helical Flux Compression Generators

    Get PDF
    Explosively driven magnetic flux compression (MFC) has been object of research for more than three decades. Actual interest in the basic physical picture of flux compression has been heightened by a newly started Department of Defense (DoD) Multi-University Research Initiative. The emphasis is on helical flux compression generators comprising a hollow cylindrical metal liner filled with high explosives and at least one helical coil surrounding the liner. After the application of a seed current, magnetic flux is trapped and high current is generated by moving, i.e., expanding, the liner explosively along the winding of the helical coil. Several key factors involved in the temporal development can be addresses by optical diagnostics. 1) The uniformity of liner expansion is captured by framing camera photography and supplemented by laser illuminated high spatial and temporal resolution imaging. Also, X-ray flash photography is insensitive to possible image blur by shockwaves coming from the exploding liner. 2) The thermodynamic state of the shocked gas is assessed by spatially and temporally resolved emission spectroscopy. 3) The moving liner-coil contact point is a possible source of high electric losses and is preferentially monitored also by emission spectroscopy. Since optical access to the region between liner and coil is not always guaranteed, optical fibers can he used to extract light from the generator. The information so gained will give, together with detailed electrical diagnostics, more insight in the physical loss mechanisms involved in MFC

    Phonon spectra of pure and acceptor doped BaZrO3 investigated with visible and UV Raman spectroscopy

    Get PDF
    We report results from visible and UV Raman spectroscopy studies of the phonon spectra of a polycrystalline sample of the prototypical perovskite type oxide BaZrO3 and a 500 nm thick film of its Y-doped, proton conducting, counterpart BaZr0.8Y0.2O2.9. Analysis of the Raman spectra measured using different excitation energies (between 3.44 eV and 5.17 eV) reveals the activation of strong resonance Raman effects involving all lattice vibrational modes. Specifically, two characteristic energies were identified for BaZrO3, one around 5 eV and one at higher energy, respectively, and one for BaZr0.8Y0.2O2.9, above 5 eV. Apart from the large difference in spectral intensity between the non-resonant and resonant conditions, the spectra are overall similar to each other, suggesting that the vibrational spectra of the perovskites are stable when investigated using an UV laser as excitation source. These results encourage further use of UV Raman spectroscopy as a novel approach for the study of lattice vibrational dynamics and local structure in proton conducting perovskites, and open up for, e.g., time-resolved experiments on thin films targeted at understanding the role of lattice vibrations in proton transport in these kinds of materials

    Axial Vector Coupling Constant in Chiral Colour Dielectric Model

    Full text link
    The axial vector coupling constants of the β\beta decay processes of neutron and hyperon are calculated in SU(3) chiral colour dielectric model (CCDM). Using these axial coupling constants of neutron and hyperon, in CCDM we calculate the integrals of the spin dependent structure functions for proton and neutron. Our result is similar to the results obtained by MIT bag and Cloudy bag models.Comment: 9 pages, Latex file, no figure, to appear in Phys. Rev.

    Hodgkin's lymphoma presenting with markedly elevated IgE: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Markedly elevated IgE as a manifestation of a lymphoproliferative disorder has been only rarely reported.</p> <p>Case Presentation</p> <p>We present the case of a 22 year old female referred to the adult Allergy & Clinical Immunology clinic for an extremely elevated IgE level, eventually diagnosed with Hodgkin's lymphoma. She had no history of atopy, recurrent infections, eczema or periodontal disease; stool was negative for ova & parasites. Chest X-ray revealed large bilateral anterior mediastinal masses that demonstrated prominent uptake on gallium scan. Mediastinal lymph node biopsy was consistent with Hodgkin's lymphoma, nodular sclerosing subtype, grade I/II.</p> <p>Conclusion</p> <p>Although uncommon, markedly elevated IgE may be a manifestation of a malignant process, most notably both Hodgkin's and Non-Hodgkin's lymphomas. This diagnosis should be considered in evaluating an otherwise unexplained elevation of IgE.</p

    Identification of Cell-Free Circulating MicroRNAs for the Detection of Early Breast Cancer and Molecular Subtyping

    Get PDF
    Early detection is crucial for achieving a reduction in breast cancer mortality. Analysis of circulating cell-free microRNAs present in the serum of cancer patients has emerged as a promising new noninvasive biomarker for early detection of tumors and for predicting their molecular classifications. The rationale for this study was to identify subtype-specific molecular profiles of cell-free microRNAs for early detection of breast cancer in serum. Fifty-four early-stage breast cancers with 27 age-matched controls were selected for circulating microRNAs evaluation in the serum. The 54 cases were molecularly classified (luminal A, luminal B, luminal B Her2 positive, Her-2, triple negative). NanoString platform was used for digital detection and quantitation of 800 tagged microRNA probes and comparing the overall differences in serum microRNA expression from breast cancer cases with controls. We identified the 42 most significant (P ≤ 0.05, 1.5-fold) differentially expressed circulating microRNAs in each molecular subtype for further study. Of these microRNAs, 19 were significantly differentially expressed in patients presenting with luminal A, eight in the luminal B, ten in luminal B HER 2 positive, and four in the HER2 enriched subtype. AUC is high with suitable sensitivity and specificity. For the triple negative subtype miR-25-3p had the best accuracy. Predictive analysis of the mRNA targets suggests they encode proteins involved in molecular pathways such as cell adhesion, migration, and proliferation. This study identified subtype-specific molecular profiles of cell-free microRNAs suitable for early detection of breast cancer selected by comparison to the microRNA profile in serum for female controls without apparent risk of breast cancer. This molecular profile should be validated using larger cohort studies to confirm the potential of these miRNA for future use as early detection biomarkers that could avoid unnecessary biopsy in patients with a suspicion of breast cancer.Foundation for Research Support of the State of São Paulo (FAPESP process 2015/21082-0) and Public Ministry of Labor Campinas (Research, Prevention, and Education of Occupational Cancer)

    Wave vector dependence of the dynamics in supercooled metallic liquids

    Full text link
    We present a detailed investigation of the wave vector dependence of collective atomic motion in Au49Cu26.9Si16.3Ag5.5Pd2.3 and Pd42.5Cu27Ni9.5P21 supercooled liquids close to the glass transition temperature. Using x-ray photon correlation spectroscopy in a precedent uncovered spatial range of only few interatomic distances, we show that the microscopic structural relaxation process follows in phase the structure with a marked slowing down at the main average inter-particle distance. This behavior is accompanied by dramatic changes in the shape of the intermediate scattering functions which suggest the presence of large dynamical heterogeneities at length-scales corresponding to few particle diameters. A ballistic-like mechanism of particle motion seems to govern the structural relaxation of the two systems in the highly viscous phase, likely associated to hopping of caged particles in agreement with theoretical studies
    • …
    corecore