18 research outputs found

    International perceptions of urban blue-green infrastructure: A comparison across four cities

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Blue-Green infrastructure (BGI) is recognised internationally as an approach for managing urban water challenges while enhancing society and the environment through the provision of multiple co-benefits. This research employed an online survey to investigate the perceptions of BGI held by professional stakeholders in four cities with established BGI programs: Newcastle (UK), Ningbo (China), Portland (Oregon USA), and Rotterdam (The Netherlands) (64 respondents). The results show that challenges associated with having too much water (e.g., pluvial and fluvial flood risk, water quality deterioration) are driving urban water management agendas. Perceptions of governance drivers for BGI implementation, BGI leaders, and strategies for improving BGI uptake, are markedly different in the four cities reflecting the varied local, regional and national responsibilities for BGI implementation. In addition to managing urban water, BGI is universally valued for its positive impact on residents’ quality of life; however, a transformative change in policy and practice towards truly multifunctional infrastructure is needed to optimise the delivery of multiple BGI benefits to address each city’s priorities and strategic objectives. Changes needed to improve BGI uptake, e.g., increasing the awareness of policy-makers to multifunctional BGI, has international relevance for other cities on their journeys to sustainable blue-green futures

    Attenuation Coefficients for Water Quality Trading

    Full text link
    Water quality trading has been proposed as a cost-effective approach for reducing nutrient loads through credit generation from agricultural or point source reductions sold to buyers facing costly options. We present a systematic approach to determine attenuation coefficients and their uncertainty. Using a process-based model, we determine attenuation with safety margins at many watersheds for total nitrogen (TN) and total phosphorus (TP) loads as they transport from point of load reduction to the credit buyer. TN and TP in-stream attenuation generally increases with decreasing mean river flow; smaller rivers in the modeled region of the Ohio River Basin had TN attenuation factors per km, including safety margins, of 0.19-1.6%, medium rivers of 0.14-1.2%, large rivers of 0.13-1.1%, and very large rivers of 0.04-0.42%. Attenuation in ditches transporting nutrients from farms to receiving rivers is 0.4%/km for TN, while for TP attenuation in ditches can be up to 2%/km. A 95 percentile safety margin of 30-40% for TN and 6-10% for TP, applied to the attenuation per km factors, was determined from the in-stream sensitivity of load reductions to watershed model parameters. For perspective, over 50 km a 1% per km factor would result in 50% attenuation = 2:1 trading ratio

    Relationships between environmental governance and water quality in a growing metropolitan area of the Pacific Northwest, USA

    Get PDF
    We investigate relationships between environmental governance and water quality in two adjacent growing metropolitan areas in the western US. While the Portland, Oregon and Vancouver, Washington metro areas share many common biophysical characteristics, they have different land development histories and water governance structures, providing a unique opportunity for examining how differences in governance might affect environmental quality. We conceptualize possible linkages in which water quality influences governance directly, using monitoring efforts as a metric, and indirectly by using the change in the sale price of single-family residential properties. Governance may then influence water quality directly through riparian restoration resulting from monitoring results and indirectly through land use policy. We investigate evidence to substantiate these linkages. Our results showed that changes in monitoring regimes and land development patterns differed in response to differences in growth management policy and environmental governance systems. Our results also showed similarities in environmental quality responses to varying governance systems. For example, we found that sales prices responded positively to improved water quality (e.g., increases in DO and reductions in bacteria counts) in both cities. Furthermore, riparian restoration efforts improved over time for both cities, indicating the positive effect of governance on this land-based resource that may result in improved water quality. However, as of yet, there were no substantial differences across study areas in water temperature over time, despite an expansion of these urban areas of more than 20 % over 24 years. The mechanisms by which water quality was maintained was similar in the sense that both cities benefited from riparian restoration, but different in the sense that Portland benefited indirectly from land use policy. A combination of long-term legacy effects of land development, and a relatively short history of riparian restoration in both the Portland and Vancouver regions, may have masked any subtle differences between study areas. An alternative explanation is that both cities exhibited combinations of positive indirect and direct water quality governance that resulted in maintenance of water quality in the face of increased urban growth. These findings suggest that a much longer-term water quality monitoring effort is needed to identify the effectiveness of alternative land development and water governance policies

    Residents' perception of flood risk and urban stream restoration using multi‐criteria decision analysis

    No full text
    This research examines how individual preferences for the major functions of stream restoration processes are associated with flood prevention and risk mitigation in Johnson Creek of Portland, Oregon, USA. We first reviewed a set of results from an analytical hierarchy process (AHP) model to rank the major stream restoration functions and compared citizens\u27 preferences for “flood prevention” using ordinary least squares regression. Our results show that the perceptions and interests of citizens may be centred on the inconvenience of everyday life arising from the previous flood events. Residents in the highly urbanized downstream regions showed a higher sensitivity to flooding than those living in the upper regions of the watershed. Community participation and annual incomes are positively related to flood risk perception in more developed downstream regions, while ecological or development goals associated with property protection are positively associated with higher flood risk perception in the less developed upper regions. Our findings of citizen perceptions can be adopted to help local government leaders and households mitigate flood risk while also achieving multiple benefits from stream restoration projects

    Portland-Vancouver ULTRA-Ex: Evaluating Relationships Between Governance and Environmental Quality in Urban Ecosystems

    Get PDF
    The Portland-Vancouver Urban Long Term Research Area (ULTRA-Ex) is a multidisciplinary project aimed at understanding the feedbacks between human and natural systems in urban settings. The ULTRA-Ex project is seeking to answer the overarching question: How do human governance and biophysical systems respond interactively to both press and pulse disturbances in urban socio-ecological systems? This presentation provides early observations and findings from the PV ULTRA-Ex project
    corecore