23,120 research outputs found

    Impurity susceptibility and the fate of spin-flop transitions in lightly-doped La(2)CuO(4)

    Full text link
    We investigate the occurrence of a two-step spin-flop transition and spin reorientation when a longitudinal magnetic field is applied to lightly hole-doped La(2)CuO(4). We find that for large and strongly frustrating impurities, such as Sr in La(2-x)Sr(x)CuO(4), the huge enhancement of the longitudinal susceptibility suppresses the intermediate flop and the reorientation of spins is smooth and continuous. Contrary, for small and weakly frustrating impurities, such as O in La(2)CuO(4+y), a discontinuous spin reorientation (two-step spin-flop transition) takes place. Furthermore, we show that for La(2-x)Sr(x)CuO(4) the field dependence of the magnon gaps differs qualitatively from the La(2)CuO(4) case, a prediction to be verified with Raman spectroscopy or neutron scattering.Comment: 4 pages, 3 figures, For the connection between spin-flops and magnetoresistance, see cond-mat/061081

    Managing migration: the Brazilian case

    Get PDF
    The objective of this paper is to present the Brazilian migration experience and its relationship with migration management. The article is divided into three parts. First, it reviews some basic facts regarding Brazilian immigration and emigration processes. Second, it focuses on some policy and legal issues related to migration. Finally, it addresses five issues regarding migration management in Brazil.international migration, immigration, emigration, migration management, migration policies, migration laws, Brazil

    Field dependence of the magnetic spectrum in anisotropic and Dzyaloshinskii-Moriya antiferromagnets: I. Theory

    Full text link
    We consider theoretically the effects of an applied uniform magnetic field on the magnetic spectrum of anisotropic two-dimensional and Dzyaloshinskii-Moriya layered quantum Heisenberg antiferromagnets. The first case is relevant for systems such as the two-dimensional square lattice antiferromagnet Sr(2)CuO(2)Cl(2), while the later is known to be relevant to the physics of the layered orthorhombic antiferromagnet La(2)CuO(4). We first establish the correspondence betwenn the low-energy spectrum obtained within the anisotropic non-linear sigma model and by means of the spin-wave approximation for a standard easy-axis antiferromagent. Then, we focus on the field-theory approach to calculate the magnetic field dependence of the magnon gaps and spectral intensities for magnetic fields applied along the three possible crystallographic directions. We discuss the various possible ground states and their evolution with temperature for the different field orientations, and the occurrence of spin-flop transitions for fields perpendicular to the layers (transverse fields) as well as for fields along the easy axis (longitudinal fields). Measurements of the one-magnon Raman spectrum in Sr(2)CuO(2)Cl(2) and La(2)CuO(4) and a comparison between the experimental results and the predictions of the present theory will be reported in part II of this research work [L. Benfatto et al., cond-mat/0602664].Comment: 21 pages, 11 figures, final version. Part II of the present work is presented in cond-mat/060266

    Initial behavioural and attitudinal responses to influenza A, H1N1 ('swine flu')

    Get PDF
    Copyright © 2010 by the BMJ Publishing Group Ltd. All rights reserved.This study was sponsored by Canadian Institute of Health Research (CIHR), and supported by the Community Coalition Concerned about SARS and other community organisations in the great Toronto area

    Atomically thin dilute magnetism in Co-doped phosphorene

    Full text link
    Two-dimensional dilute magnetic semiconductors can provide fundamental insights in the very nature of magnetic orders and their manipulation through electron and hole doping. Despite the fundamental physics, due to the large charge density control capability in these materials, they can be extremely important in spintronics applications such as spin valve and spin-based transistors. In this article, we studied a two-dimensional dilute magnetic semiconductors consisting of phosphorene monolayer doped with cobalt atoms in substitutional and interstitial defects. We show that these defects can be stabilized and are electrically active. Furthermore, by including holes or electrons by a potential gate, the exchange interaction and magnetic order can be engineered, and may even induce a ferromagnetic-to-antiferromagnetic phase transition in p-doped phosphorene.Comment: 7 pages, 4 colorful figure

    Negative Hopping Magnetoresistance and Dimensional Crossover in Lightly Doped Cuprate Superconductors

    Full text link
    We show that, due to the weak ferromagnetism of La2x_{2-x}Srx_xCuO4_4, an external magnetic field leads to a dimensional crossover 2D \to 3D for the in-plane transport. The crossover results in an increase of the hole's localization length and hence in a dramatic negative magnetoresistance in the variable range hopping regime. This mechanism quantitatively explains puzzling experimental data on the negative magnetoresistance in the N\'eel phase of La2x_{2-x}Srx_xCuO4_4.Comment: 6 pages, 3 figures; published versio

    Mass formula for T=0 and T=1 ground states of N=Z nuclei

    Get PDF
    An algebraic model is developed to calculate the T=0 and T=1 ground state binding energies for N=Z nuclei. The method is tested in the sd shell and is then extended to 28-50 shell which is currently the object of many experimental studies.Comment: 5 figure
    corecore