460 research outputs found
Probing the Electronic Structure of Bilayer Graphene by Raman Scattering
The electronic structure of bilayer graphene is investigated from a resonant
Raman study using different laser excitation energies. The values of the
parameters of the Slonczewski-Weiss-McClure model for graphite are measured
experimentally and some of them differ significantly from those reported
previously for graphite, specially that associated with the difference of the
effective mass of electrons and holes. The splitting of the two TO phonon
branches in bilayer graphene is also obtained from the experimental data. Our
results have implications for bilayer graphene electronic devices.Comment: 4 pages, 4 figure
Influence of landscape context on the abundance of native bee pollinators in tomato crops in Central Brazil.
Made available in DSpace on 2018-08-08T00:50:12Z (GMT). No. of bitstreams: 1
Franceschinelli2017ArticleInfluenceOfLandscapeContextOnT.pdf: 1599822 bytes, checksum: 148c797a99c6db89f0eec1352bd2d3b6 (MD5)
Previous issue date: 2017-11-07bitstream/item/181024/1/Franceschinelli2017-Article-InfluenceOfLandscapeContextOnT.pd
Comparação dos imuno-ensaios de fluorescência polarizada (TDx) e enzimático competitivo (EMIT 2000 ) na dosagem da concentração de ciclosporina A no sangue total
Evaluation of Cyclosporin A (CyA) blood concentration is imperative in solid organ transplantation in order to achieve maximal immunosuppression with the least side effects. We compared the results of whole blood concentrations of CyA in 50 blood samples simultaneously evaluated by the fluorescent polarization immune assay (TDx) and the enzymatic competitive immune assay (EMIT 2000). There was a strong correlation between both kits for any range of CyA blood concentration (R=0.99, pA avaliação da concentração sanguínea de ciclosporina A (CyA) é necessária em transplantes de órgãos sólidos para obter-se máxima imunosupressão e mínimos efeitos colaterais. Nós comparamos os resultados da concentração de CyA em 50 amostras sanguíneas analisadas pelos métodos dos imuno-ensaios de fluorescência polarizada (TDx) e enzimático competitivo (EMIT 2000). Houve uma forte correlação entre ambos métodos para qualquer faixa de concentração de CyA (R=0.99,
Density functional investigations of defect induced mid-gap states in graphane
We have carried out ab initio electronic structure calculations on graphane
(hydrogenated graphene) with single and double vacancy defects. Our analysis of
the density of states reveal that such vacancies induce the mid gap states and
modify the band gap. The induced states are due to the unpaired electrons on
carbon atoms. Interestingly the placement and the number of such states is
found to be sensitive to the distance between the vacancies. Furthermore we
also found that in most of the cases the vacancies induce a local magnetic
moment.Comment: 15 page
Boundary States in Graphene Heterojunctions
A new type of states in graphene-based planar heterojunctions has been
studied in the envelope wave function approximation. The condition for the
formation of these states is the intersection between the dispersion curves of
graphene and its gap modification. This type of states can also occur in smooth
graphene-based heterojunctions.Comment: 5 pages, 3 figure
Electric Field Effects on Graphene Materials
Understanding the effect of electric fields on the physical and chemical
properties of two-dimensional (2D) nanostructures is instrumental in the design
of novel electronic and optoelectronic devices. Several of those properties are
characterized in terms of the dielectric constant which play an important role
on capacitance, conductivity, screening, dielectric losses and refractive
index. Here we review our recent theoretical studies using density functional
calculations including van der Waals interactions on two types of layered
materials of similar two-dimensional molecular geometry but remarkably
different electronic structures, that is, graphene and molybdenum disulphide
(MoS). We focus on such two-dimensional crystals because of they
complementary physical and chemical properties, and the appealing interest to
incorporate them in the next generation of electronic and optoelectronic
devices. We predict that the effective dielectric constant () of
few-layer graphene and MoS is tunable by external electric fields (). We show that at low fields ( V/\AA)
assumes a nearly constant value 4 for both materials, but increases at
higher fields to values that depend on the layer thickness. The thicker the
structure the stronger is the modulation of with the electric
field. Increasing of the external field perpendicular to the layer surface
above a critical value can drive the systems to an unstable state where the
layers are weakly coupled and can be easily separated. The observed dependence
of on the external field is due to charge polarization driven by
the bias, which show several similar characteristics despite of the layer
considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter:
Advances in Physics and Chemistry, Springer Series on Carbon Materials.
Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references
Group-IV graphene- and graphane-like nanosheets
We performed a first principles investigation on the structural and
electronic properties of group-IV (C, SiC, Si, Ge, and Sn) graphene-like sheets
in flat and buckled configurations and the respective hydrogenated or
fluorinated graphane-like ones. The analysis on the energetics, associated with
the formation of those structures, showed that fluorinated graphane-like sheets
are very stable, and should be easily synthesized in laboratory. We also
studied the changes on the properties of the graphene-like sheets, as result of
hydrogenation or fluorination. The interatomic distances in those graphane-like
sheets are consistent with the respective crystalline ones, a property that may
facilitate integration of those sheets within three-dimensional nanodevices
How close can one approach the Dirac point in graphene experimentally?
The above question is frequently asked by theorists who are interested in
graphene as a model system, especially in context of relativistic quantum
physics. We offer an experimental answer by describing electron transport in
suspended devices with carrier mobilities of several 10^6 cm^2V^-1s^-1 and with
the onset of Landau quantization occurring in fields below 5 mT. The observed
charge inhomogeneity is as low as \approx10^8 cm^-2, allowing a neutral state
with a few charge carriers per entire micron-scale device. Above liquid helium
temperatures, the electronic properties of such devices are intrinsic, being
governed by thermal excitations only. This yields that the Dirac point can be
approached within 1 meV, a limit currently set by the remaining charge
inhomogeneity. No sign of an insulating state is observed down to 1 K, which
establishes the upper limit on a possible bandgap
- …