460 research outputs found

    Probing the Electronic Structure of Bilayer Graphene by Raman Scattering

    Full text link
    The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.Comment: 4 pages, 4 figure

    Influence of landscape context on the abundance of native bee pollinators in tomato crops in Central Brazil.

    Get PDF
    Made available in DSpace on 2018-08-08T00:50:12Z (GMT). No. of bitstreams: 1 Franceschinelli2017ArticleInfluenceOfLandscapeContextOnT.pdf: 1599822 bytes, checksum: 148c797a99c6db89f0eec1352bd2d3b6 (MD5) Previous issue date: 2017-11-07bitstream/item/181024/1/Franceschinelli2017-Article-InfluenceOfLandscapeContextOnT.pd

    Comparação dos imuno-ensaios de fluorescência polarizada (TDx) e enzimático competitivo (EMIT 2000 ) na dosagem da concentração de ciclosporina A no sangue total

    Get PDF
    Evaluation of Cyclosporin A (CyA) blood concentration is imperative in solid organ transplantation in order to achieve maximal immunosuppression with the least side effects. We compared the results of whole blood concentrations of CyA in 50 blood samples simultaneously evaluated by the fluorescent polarization immune assay (TDx) and the enzymatic competitive immune assay (EMIT 2000). There was a strong correlation between both kits for any range of CyA blood concentration (R=0.99, pA avaliação da concentração sanguínea de ciclosporina A (CyA) é necessária em transplantes de órgãos sólidos para obter-se máxima imunosupressão e mínimos efeitos colaterais. Nós comparamos os resultados da concentração de CyA em 50 amostras sanguíneas analisadas pelos métodos dos imuno-ensaios de fluorescência polarizada (TDx) e enzimático competitivo (EMIT 2000). Houve uma forte correlação entre ambos métodos para qualquer faixa de concentração de CyA (R=0.99,

    Density functional investigations of defect induced mid-gap states in graphane

    Full text link
    We have carried out ab initio electronic structure calculations on graphane (hydrogenated graphene) with single and double vacancy defects. Our analysis of the density of states reveal that such vacancies induce the mid gap states and modify the band gap. The induced states are due to the unpaired electrons on carbon atoms. Interestingly the placement and the number of such states is found to be sensitive to the distance between the vacancies. Furthermore we also found that in most of the cases the vacancies induce a local magnetic moment.Comment: 15 page

    Boundary States in Graphene Heterojunctions

    Full text link
    A new type of states in graphene-based planar heterojunctions has been studied in the envelope wave function approximation. The condition for the formation of these states is the intersection between the dispersion curves of graphene and its gap modification. This type of states can also occur in smooth graphene-based heterojunctions.Comment: 5 pages, 3 figure

    Electric Field Effects on Graphene Materials

    Full text link
    Understanding the effect of electric fields on the physical and chemical properties of two-dimensional (2D) nanostructures is instrumental in the design of novel electronic and optoelectronic devices. Several of those properties are characterized in terms of the dielectric constant which play an important role on capacitance, conductivity, screening, dielectric losses and refractive index. Here we review our recent theoretical studies using density functional calculations including van der Waals interactions on two types of layered materials of similar two-dimensional molecular geometry but remarkably different electronic structures, that is, graphene and molybdenum disulphide (MoS2_2). We focus on such two-dimensional crystals because of they complementary physical and chemical properties, and the appealing interest to incorporate them in the next generation of electronic and optoelectronic devices. We predict that the effective dielectric constant (ε\varepsilon) of few-layer graphene and MoS2_2 is tunable by external electric fields (EextE_{\rm ext}). We show that at low fields (Eext<0.01E_{\rm ext}^{}<0.01 V/\AA) ε\varepsilon assumes a nearly constant value \sim4 for both materials, but increases at higher fields to values that depend on the layer thickness. The thicker the structure the stronger is the modulation of ε\varepsilon with the electric field. Increasing of the external field perpendicular to the layer surface above a critical value can drive the systems to an unstable state where the layers are weakly coupled and can be easily separated. The observed dependence of ε\varepsilon on the external field is due to charge polarization driven by the bias, which show several similar characteristics despite of the layer considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter: Advances in Physics and Chemistry, Springer Series on Carbon Materials. Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references

    Group-IV graphene- and graphane-like nanosheets

    Full text link
    We performed a first principles investigation on the structural and electronic properties of group-IV (C, SiC, Si, Ge, and Sn) graphene-like sheets in flat and buckled configurations and the respective hydrogenated or fluorinated graphane-like ones. The analysis on the energetics, associated with the formation of those structures, showed that fluorinated graphane-like sheets are very stable, and should be easily synthesized in laboratory. We also studied the changes on the properties of the graphene-like sheets, as result of hydrogenation or fluorination. The interatomic distances in those graphane-like sheets are consistent with the respective crystalline ones, a property that may facilitate integration of those sheets within three-dimensional nanodevices

    How close can one approach the Dirac point in graphene experimentally?

    Full text link
    The above question is frequently asked by theorists who are interested in graphene as a model system, especially in context of relativistic quantum physics. We offer an experimental answer by describing electron transport in suspended devices with carrier mobilities of several 10^6 cm^2V^-1s^-1 and with the onset of Landau quantization occurring in fields below 5 mT. The observed charge inhomogeneity is as low as \approx10^8 cm^-2, allowing a neutral state with a few charge carriers per entire micron-scale device. Above liquid helium temperatures, the electronic properties of such devices are intrinsic, being governed by thermal excitations only. This yields that the Dirac point can be approached within 1 meV, a limit currently set by the remaining charge inhomogeneity. No sign of an insulating state is observed down to 1 K, which establishes the upper limit on a possible bandgap
    corecore