2 research outputs found

    Planck \u27s Dusty GEMS: VII. Atomic carbon and molecular gas in dusty starburst galaxies at z = 2 to 4

    Get PDF
    The bright 3 P 1 - 3 P 0 ([CI] 1-0) and 3 P 2 - 3 P 1 ([CI] 2-1) lines of atomic carbon are becoming more and more widely employed as tracers of the cold neutral gas in high-redshift galaxies. Here we present observations of these lines in the 11 galaxies of the set of Planck\u27s Dusty GEMS, the brightest gravitationally lensed galaxies on the extragalactic submillimeter sky probed by the Planck satellite. We have [CI] 1-0 and [CI] 2-1 measurements for seven and eight of these galaxies, respectively, including four galaxies where both lines have been measured. We use our observations to constrain the gas excitation mechanism, excitation temperatures, optical depths, atomic carbon and molecular gas masses, and carbon abundances. Ratios of L CI /L FIR are similar to those found in the local universe, and suggest that the total cooling budget through atomic carbon has not significantly changed in the last 12 Gyr. Both lines are optically thin and trace 1 - 6 7 10 7 M of atomic carbon. Carbon abundances, X CI , are between 2.5 and 4 7 10 -5 , for an ultra-luminous infrared galaxy (ULIRG) CO-to-H 2 conversion factor of α CO = 0.8 M / [K km s -1 pc 2 ]. Ratios of molecular gas masses derived from [CI] 1-0 and CO agree within the measurement uncertainties for five galaxies, and agree to better than a factor of two for another two with [CI] 1-0 measurements, after carefully taking CO excitation into account. This does not support the idea that intense, high-redshift starburst galaxies host large quantities of "CO-dark" gas. These results support the common assumptions underlying most molecular gas mass estimates made for massive, dusty, high-redshift starburst galaxies, although the good agreement between the masses obtained with both tracers cannot be taken as independent confirmation of either α CO or X CI

    First results from the JWST Early Release Science Program Q3D: The Warm Ionized Gas Outflow in z ~ 1.6 Quasar XID 2028 and its Impact on the Host Galaxy

    No full text
    International audienceQuasar feedback may regulate the growth of supermassive black holes, quench coeval star formation, and impact galaxy morphology and the circumgalactic medium. However, direct evidence for quasar feedback in action at the epoch of peak black hole accretion at z ~ 2 remains elusive. A good case in point is the z = 1.6 quasar WISEA J100211.29+013706.7 (XID 2028) where past analyses of the same ground-based data have come to different conclusions. Here we revisit this object with the integral field unit of the Near Infrared Spectrograph (NIRSpec) on board the James Webb Space Telescope (JWST) as part of Early Release Science program Q3D. The excellent angular resolution and sensitivity of the JWST data reveal new morphological and kinematic sub-structures in the outflowing gas plume. An analysis of the emission line ratios indicates that photoionization by the central quasar dominates the ionization state of the gas with no obvious sign for a major contribution from hot young stars anywhere in the host galaxy. Rest-frame near-ultraviolet emission aligned along the wide-angle cone of outflowing gas is interpreted as a scattering cone. The outflow has cleared a channel in the dusty host galaxy through which some of the quasar ionizing radiation is able to escape and heat the surrounding interstellar and circumgalactic media. The warm ionized outflow is not powerful enough to impact the host galaxy via mechanical feedback, but radiative feedback by the AGN, aided by the outflow, may help explain the unusually small molecular gas mass fraction in the galaxy host
    corecore