30 research outputs found

    Iterated Differential Forms I: Tensors

    Full text link
    We interpret tensors on a smooth manifold M as differential forms over a graded commutative algebra called the algebra of iterated differential forms over M. This allows us to put standard tensor calculus in a new differentially closed context and, in particular, enriches it with new natural operations. Applications will be considered in subsequent notes.Comment: 9 pages, extended version of the published note Dokl. Math. 73, n. 2 (2006) 16

    Iterated Differential Forms II: Riemannian Geometry Revisited

    Full text link
    A natural extension of Riemannian geometry to a much wider context is presented on the basis of the iterated differential form formalism developed in math.DG/0605113 and an application to general relativity is given.Comment: 12 pages, extended version of the published note Dokl. Math. 73, n. 2 (2006) 18

    On the category of Lie n-algebroids

    Get PDF
    Lie n-algebroids and Lie infinity algebroids are usually thought of exclusively in supergeometric or algebraic terms. In this work, we apply the higher derived brackets construction to obtain a geometric description of Lie n-algebroids by means of brackets and anchors. Moreover, we provide a geometric description of morphisms of Lie n-algebroids over different bases, give an explicit formula for the Chevalley-Eilenberg differential of a Lie n-algebroid, compare the categories of Lie n-algebroids and NQ-manifolds, and prove some conjectures of Sheng and Zhu [SZ11].Comment: 29 pages, to appear in Journal of Geometry and Physic

    The noncommutative geometry of Yang-Mills fields

    Full text link
    We generalize to topologically non-trivial gauge configurations the description of the Einstein-Yang-Mills system in terms of a noncommutative manifold, as was done previously by Chamseddine and Connes. Starting with an algebra bundle and a connection thereon, we obtain a spectral triple, a construction that can be related to the internal Kasparov product in unbounded KK-theory. In the case that the algebra bundle is an endomorphism bundle, we construct a PSU(N)-principal bundle for which it is an associated bundle. The so-called internal fluctuations of the spectral triple are parametrized by connections on this principal bundle and the spectral action gives the Yang-Mills action for these gauge fields, minimally coupled to gravity. Finally, we formulate a definition for a topological spectral action.Comment: 14 page

    Morita base change in Hopf-cyclic (co)homology

    Full text link
    In this paper, we establish the invariance of cyclic (co)homology of left Hopf algebroids under the change of Morita equivalent base algebras. The classical result on Morita invariance for cyclic homology of associative algebras appears as a special example of this theory. In our main application we consider the Morita equivalence between the algebra of complex-valued smooth functions on the classical 2-torus and the coordinate algebra of the noncommutative 2-torus with rational parameter. We then construct a Morita base change left Hopf algebroid over this noncommutative 2-torus and show that its cyclic (co)homology can be computed by means of the homology of the Lie algebroid of vector fields on the classical 2-torus.Comment: Final version to appear in Lett. Math. Phy

    Symmetries in Classical Field Theory

    Full text link
    The multisymplectic description of Classical Field Theories is revisited, including its relation with the presymplectic formalism on the space of Cauchy data. Both descriptions allow us to give a complete scheme of classification of infinitesimal symmetries, and to obtain the corresponding conservation laws.Comment: 70S05; 70H33; 55R10; 58A2

    Smooth manifolds and observables

    No full text
    This textbook demonstrates how differential calculus, smooth manifolds, and commutative algebra constitute a unified whole, despite having arisen at different times and under different circumstances. Motivating this synthesis is the mathematical formalization of the process of observation from classical physics. A broad audience will appreciate this unique approach for the insight it gives into the underlying connections between geometry, physics, and commutative algebra. The main objective of this book is to explain how differential calculus is a natural part of commutative algebra. This is achieved by studying the corresponding algebras of smooth functions that result in a general construction of the differential calculus on various categories of modules over the given commutative algebra. It is shown in detail that the ordinary differential calculus and differential geometry on smooth manifolds turns out to be precisely the particular case that corresponds to the category of geometric modules over smooth algebras. This approach opens the way to numerous applications, ranging from delicate questions of algebraic geometry to the theory of elementary particles. Smooth Manifolds and Observables is intended for advanced undergraduates, graduate students, and researchers in mathematics and physics. This second edition adds ten new chapters to further develop the notion of differential calculus over commutative algebras, showing it to be a generalization of the differential calculus on smooth manifolds. Applications to diverse areas, such as symplectic manifolds, de Rham cohomology, and Poisson brackets are explored. Additional examples of the basic functors of the theory are presented alongside numerous new exercises, providing readers with many more opportunities to practice these concepts

    Smooth manifolds and observables

    No full text

    Smooth Manifolds and Observables

    No full text
    corecore