23 research outputs found

    The mechanisms of androgen effects on body composition: mesenchymal pluripotent cell as the target of androgen action

    Get PDF
    Testosterone supplementation increases muscle mass primarily by inducing muscle fiber hypertrophy; however, the mechanisms by which testosterone exerts its anabolic effects on the muscle are poorly understood. The prevalent view is that testosterone improves net muscle protein balance by stimulating muscle protein synthesis, decreasing muscle protein degradation, and improving the reutilization of amino acids. However, the muscle protein synthesis hypothesis does not adequately explain testosterone-induced changes in fat mass, myonuclear number, and satellite cell number. We postulate that testosterone promotes the commitment of pluripotent stem cells into the myogenic lineage and inhibits their differentiation into the adipogenic lineage. The hypothesis that the primary site of androgen action is the pluripotent stem cell provides a unifying explanation for the observed reciprocal effects of testosterone on muscle and fat mass

    Antifibrotic Effects of Pioglitazone at Low Doses on the Diabetic Rat Kidney Are Associated with the Improvement of Markers of Cell Turnover, Tubular and Endothelial Integrity, and Angiogenesis

    Get PDF
    BACKGROUND/AIMS: Pioglitazone and other thiazolidinediones are renoprotective in diabetic nephropathy at doses that normalize glycemia, presumably as a consequence of glycemic control. However, low doses of pioglitazone that did not normalize glycemia in rat models of type 2 diabetes prevented tubulointerstitial fibrosis and glomerulosclerosis through counteracting inflammation, oxidative stress, cell cycle arrest, and fibrosis. The current work tested whether this low-dose treatment also reduces other fibrosis and inflammation factors in the diabetic kidney and prevents tubular cell loss, endothelial damage, and abnormal angiogenesis. METHODS: ZDF fa/fa rats (ZDF) were fed for 4 months chow with 0.001% pioglitazone, and the untreated ZDF and the non-diabetic lean Zucker rats (LZR) received regular chow. Proteinuria, creatinine clearance, blood pressure, and renal quantitative histopathology markers were determined. RESULTS: Correction of renal function in ZDF by pioglitazone, occurring with a glycemia >250 mg/dl, was accompanied by normalization of the renal levels of connective tissue growth factor and fibronectin (fibrosis), TNF-α, interleukin-6 and MCP-1 (inflammation), megalin (tubular cells), the PCNA/caspase-3 ratio (positive cell turnover), VEGF (abnormal angiogenesis), and the ratio between eNOS and iNOS (endothelial dysfunction). CONCLUSION: This supports mechanisms for the renoprotective effects of pioglitazone in diabetes additional to glycemic control.Fil: Toblli, Jorge Eduardo. Hospital Alemán. Laboratorio de Medicina Experimental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cao, Gabriel Fernando. Hospital Alemán. Laboratorio de Medicina Experimental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Giani, Jorge Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Angerosa, Margarita. Hospital Alemán. Laboratorio de Medicina Experimental; ArgentinaFil: Dominici, Fernando Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Gonzalez Cadavid, Nestor F.. University of California at Los Angeles; Estados Unidos. Charles Drew University; Estados Unido

    Myostatin genetic inactivation inhibits myogenesis by muscle derived stem cells in vitro but not when implanted in the mdx mouse muscle

    Get PDF
    Abstract Introduction Stimulating the commitment of implanted dystrophin+ muscle-derived stem cells (MDSCs) into myogenic, as opposed to lipofibrogenic lineages, is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). Methods To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor, would help this process, we compared the in vitro myogenic and fibrogenic capacity of MDSCs from wild-type (WT) and myostatin knockout (Mst KO) mice under various modulators, the expression of key stem cell and myogenic genes, and the capacity of these MDSCs to repair the injured gastrocnemius in aged dystrophic mdx mice with exacerbated lipofibrosis. Results Surprisingly, the potent in vitro myotube formation by WT MDSCs was refractory to modulators of myostatin expression or activity, and the Mst KO MDSCs failed to form myotubes under various conditions, despite both MDSC expressing Oct 4 and various stem cell genes and differentiating into nonmyogenic lineages. The genetic inactivation of myostatin in MDSCs was associated with silencing of critical genes for early myogenesis (Actc1, Acta1, and MyoD). WT MDSCs implanted into the injured gastrocnemius of aged mdx mice significantly improved myofiber repair and reduced fat deposition and, to a lesser extent, fibrosis. In contrast to their in vitro behavior, Mst KO MDSCs in vivo also significantly improved myofiber repair, but had few effects on lipofibrotic degeneration. Conclusions Although WT MDSCs are very myogenic in culture and stimulate muscle repair after injury in the aged mdx mouse, myostatin genetic inactivation blocks myotube formation in vitro, but the myogenic capacity is recovered in vivo under the influence of the myostatin+ host-tissue environment, presumably by reactivation of key genes originally silenced in the Mst KO MDSCs
    corecore