1,914 research outputs found
Quantum Effective Action in Spacetimes with Branes and Boundaries
We construct quantum effective action in spacetime with branes/boundaries.
This construction is based on the reduction of the underlying Neumann type
boundary value problem for the propagator of the theory to that of the much
more manageable Dirichlet problem. In its turn, this reduction follows from the
recently suggested Neumann-Dirichlet duality which we extend beyond the tree
level approximation. In the one-loop approximation this duality suggests that
the functional determinant of the differential operator subject to Neumann
boundary conditions in the bulk factorizes into the product of its Dirichlet
counterpart and the functional determinant of a special operator on the brane
-- the inverse of the brane-to-brane propagator. As a byproduct of this
relation we suggest a new method for surface terms of the heat kernel
expansion. This method allows one to circumvent well-known difficulties in heat
kernel theory on manifolds with boundaries for a wide class of generalized
Neumann boundary conditions. In particular, we easily recover several lowest
order surface terms in the case of Robin and oblique boundary conditions. We
briefly discuss multi-loop applications of the suggested Dirichlet reduction
and the prospects of constructing the universal background field method for
systems with branes/boundaries, analogous to the Schwinger-DeWitt technique.Comment: LaTeX, 25 pages, final version, to appear in Phys. Rev.
Nonlinear interfaces: intrinsically nonparaxial regimes and effects
The behaviour of optical solitons at planar nonlinear boundaries is a problem rich in intrinsically nonparaxial regimes that cannot be fully addressed by theories based on the nonlinear Schrödinger equation. For instance, large propagation angles are typically involved in external refraction at interfaces. Using a recently proposed generalized Snell's law for Helmholtz solitons, we analyse two such effects: nonlinear external refraction and total internal reflection at interfaces where internal and external refraction, respectively, would be found in the absence of nonlinearity. The solutions obtained from the full numerical integration of the nonlinear Helmholtz equation show excellent agreement with the theoretical predictions
Smooth Loops and Fiber Bundles: Theory of Principal Q-bundles
A nonassociative generalization of the principal fiber bundles with a smooth
loop mapping on the fiber is presented. Our approach allows us to construct a
new kind of gauge theories that involve higher ''nonassociative'' symmetries.Comment: 20 page
Quantum search using non-Hermitian adiabatic evolution
We propose a non-Hermitian quantum annealing algorithm which can be useful
for solving complex optimization problems. We demonstrate our approach on
Grover's problem of finding a marked item inside of unsorted database. We show
that the energy gap between the ground and excited states depends on the
relaxation parameters, and is not exponentially small. This allows a
significant reduction of the searching time. We discuss the relations between
the probabilities of finding the ground state and the survival of a quantum
computer in a dissipative environment.Comment: 5 pages, 3 figure
Mirror-Descent Methods in Mixed-Integer Convex Optimization
In this paper, we address the problem of minimizing a convex function f over
a convex set, with the extra constraint that some variables must be integer.
This problem, even when f is a piecewise linear function, is NP-hard. We study
an algorithmic approach to this problem, postponing its hardness to the
realization of an oracle. If this oracle can be realized in polynomial time,
then the problem can be solved in polynomial time as well. For problems with
two integer variables, we show that the oracle can be implemented efficiently,
that is, in O(ln(B)) approximate minimizations of f over the continuous
variables, where B is a known bound on the absolute value of the integer
variables.Our algorithm can be adapted to find the second best point of a
purely integer convex optimization problem in two dimensions, and more
generally its k-th best point. This observation allows us to formulate a
finite-time algorithm for mixed-integer convex optimization
Effective action and heat kernel in a toy model of brane-induced gravity
We apply a recently suggested technique of the Neumann-Dirichlet reduction to
a toy model of brane-induced gravity for the calculation of its quantum
one-loop effective action. This model is represented by a massive scalar field
in the -dimensional flat bulk supplied with the -dimensional kinetic
term localized on a flat brane and mimicking the brane Einstein term of the
Dvali-Gabadadze-Porrati (DGP) model. We obtain the inverse mass expansion of
the effective action and its ultraviolet divergences which turn out to be
non-vanishing for both even and odd spacetime dimensionality . For the
massless case, which corresponds to a limit of the toy DGP model, we obtain the
Coleman-Weinberg type effective potential of the system. We also obtain the
proper time expansion of the heat kernel in this model associated with the
generalized Neumann boundary conditions containing second order tangential
derivatives. We show that in addition to the usual integer and half-integer
powers of the proper time this expansion exhibits, depending on the dimension
, either logarithmic terms or powers multiple of one quarter. This property
is considered in the context of strong ellipticity of the boundary value
problem, which can be violated when the Euclidean action of the theory is not
positive definite.Comment: LaTeX, 20 pages, new references added, typos correcte
Nonassociative strict deformation quantization of C*-algebras and nonassociative torus bundles
In this paper, we initiate the study of nonassociative strict deformation
quantization of C*-algebras with a torus action. We shall also present a
definition of nonassociative principal torus bundles, and give a classification
of these as nonassociative strict deformation quantization of ordinary
principal torus bundles. We then relate this to T-duality of principal torus
bundles with -flux. We also show that the Octonions fit nicely into our
theory.Comment: 15 pages, latex2e, exposition improved, to appear in LM
Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization
We present a practical implementation of an optimal first-order method, due
to Nesterov, for large-scale total variation regularization in tomographic
reconstruction, image deblurring, etc. The algorithm applies to -strongly
convex objective functions with -Lipschitz continuous gradient. In the
framework of Nesterov both and are assumed known -- an assumption
that is seldom satisfied in practice. We propose to incorporate mechanisms to
estimate locally sufficient and during the iterations. The mechanisms
also allow for the application to non-strongly convex functions. We discuss the
iteration complexity of several first-order methods, including the proposed
algorithm, and we use a 3D tomography problem to compare the performance of
these methods. The results show that for ill-conditioned problems solved to
high accuracy, the proposed method significantly outperforms state-of-the-art
first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure
- …