628 research outputs found

    Quasigroups, Asymptotic Symmetries and Conservation Laws in General Relativity

    Full text link
    A new quasigroup approach to conservation laws in general relativity is applied to study asymptotically flat at future null infinity spacetime. The infinite-parametric Newman-Unti group of asymptotic symmetries is reduced to the Poincar\'e quasigroup and the Noether charge associated with any element of the Poincar\'e quasialgebra is defined. The integral conserved quantities of energy-momentum and angular momentum are linear on generators of Poincar\'e quasigroup, free of the supertranslation ambiguity, posess the flux and identically equal to zero in Minkowski spacetime.Comment: RevTeX4, 5 page

    Smooth Loops and Fiber Bundles: Theory of Principal Q-bundles

    Full text link
    A nonassociative generalization of the principal fiber bundles with a smooth loop mapping on the fiber is presented. Our approach allows us to construct a new kind of gauge theories that involve higher ''nonassociative'' symmetries.Comment: 20 page

    Quantum search using non-Hermitian adiabatic evolution

    Full text link
    We propose a non-Hermitian quantum annealing algorithm which can be useful for solving complex optimization problems. We demonstrate our approach on Grover's problem of finding a marked item inside of unsorted database. We show that the energy gap between the ground and excited states depends on the relaxation parameters, and is not exponentially small. This allows a significant reduction of the searching time. We discuss the relations between the probabilities of finding the ground state and the survival of a quantum computer in a dissipative environment.Comment: 5 pages, 3 figure

    Nonlinear Dynamics of Dipoles in Microtubules: Pseudo-Spin Model

    Full text link
    We perform a theoretical study of the dynamics of the electric field excitations in a microtubule by taking into consideration the realistic cylindrical geometry, dipole-dipole interactions of the tubulin-based protein heterodimers, the radial electric field produced by the solvent, and a possible degeneracy of energy states of individual heterodimers. The consideration is done in the frames of the classical pseudo-spin model. We derive the system of nonlinear dynamical ordinary differential equations of motion for interacting dipoles, and the continuum version of these equations. We obtain the solutions of these equations in the form of snoidal waves, solitons, kinks, and localized spikes. Our results will help to a better understanding of the functional properties of microtubules including the motor protein dynamics and the information transfer processes. Our considerations are based on classical dynamics. Some speculations on the role of possible quantum effects are also made.Comment: 14 pages, 15 figures. The high resolution figure files are available by reques

    Smooth Loops, Generalized Coherent States and Geometric Phases

    Get PDF
    A description of generalized coherent states and geometric phases in the light of the general theory of smooth loops is given.Comment: LATeX file, 11 page

    Substitutional landscape of a split fluorescent protein fragment using high-density peptide microarrays

    Get PDF
    Split fluorescent proteins have wide applicability as biosensors for protein-protein interactions, genetically encoded tags for protein detection and localization, as well as fusion partners in super-resolution microscopy. We have here established and validated a novel platform for functional analysis of leave-one-out split fluorescent proteins (LOO-FPs) in high throughput and with rapid turnover. We have screened more than 12,000 variants of the beta-strand split fragment using high-density peptide microarrays for binding and functional complementation in Green Fluorescent Protein. We studied the effect of peptide length and the effect of different linkers to the solid support. We further mapped the effect of all possible amino acid substitutions on each position as well as in the context of some single and double amino acid substitutions. As all peptides were tested in 12 duplicates, the analysis rests on a firm statistical basis allowing for confirmation of the robustness and precision of the method. Based on experiments in solution, we conclude that under the given conditions, the signal intensity on the peptide microarray faithfully reflects the binding affinity between the split fragments. With this, we are able to identify a peptide with 9-fold higher affinity than the starting peptide

    Complex magnetic monopoles, geometric phases and quantum evolution in vicinity of diabolic and exceptional points

    Full text link
    We consider the geometric phase and quantum tunneling in vicinity of diabolic and exceptional points. We show that the geometric phase associated with the degeneracy points is defined by the flux of complex magnetic monopole. In weak-coupling limit the leading contribution to the real part of geometric phase is given by the flux of the Dirac monopole plus quadrupole term, and the expansion for its imaginary part starts with the dipolelike field. For a two-level system governed by the generic non-Hermitian Hamiltonian, we derive a formula to compute the non-adiabatic complex geometric phase by integral over the complex Bloch sphere. We apply our results to to study a two-level dissipative system driven by periodic electromagnetic field and show that in the vicinity of the exceptional point the complex geometric phase behaves as step-like function. Studying tunneling process near and at exceptional point, we find two different regimes: coherent and incoherent. The coherent regime is characterized by the Rabi oscillations and one-sheeted hyperbolic monopole emerges in this region of the parameters. In turn with the incoherent regime the two-sheeted hyperbolic monopole is associated. The exceptional point is the critical point of the system where the topological transition occurs and both of the regimes yield the quadratic dependence on time. We show that the dissipation brings into existence of pulses in the complex geometric phase and the pulses are disappeared when dissipation dies out. Such a strong coupling effect of the environment is beyond of the conventional adiabatic treatment of the Berry phase.Comment: 29 pages, 21 figure
    corecore