4 research outputs found

    Ionospheric propagation correction modeling for satellite altimeters

    Get PDF
    The theoretical basis and avaliable accuracy verifications were reviewed and compared for ionospheric correction procedures based on a global ionsopheric model driven by solar flux, and a technique in which measured electron content (using Faraday rotation measurements) for one path is mapped into corrections for a hemisphere. For these two techniques, RMS errors for correcting satellite altimeters data (at 14 GHz) are estimated to be 12 cm and 3 cm, respectively. On the basis of global accuracy and reliability after implementation, the solar flux model is recommended

    Ionospheric Refraction Corrections in the GTDS for Satellite-To-Satellite Tracking Data

    Get PDF
    In satellite-to-satellite tracking (SST) geographic as well as diurnal ionospheric effects must be contended with, for the line of sight between satellites can cross a day-night interface or lie within the equatorial ionosphere. These various effects were examined and a method of computing ionospheric refraction corrections to range and range rate measurements with sufficient accuracy were devised to be used in orbit determinations. The Bent Ionospheric Model is used for SST refraction corrections. Making use of this model a method of computing corrections through large ionospheric gradients was devised and implemented into the Goddard Trajectory Determination System. The various considerations taken in designing and implementing this SST refraction correction algorithm are reported

    Investigation of the ionospheric Faraday rotation for use in orbit corrections

    Get PDF
    The possibility of mapping the Faraday factors on a worldwide basis was examined as a simple method of representing the conversion factors for any possible user. However, this does not seem feasible. The complex relationship between the true magnetic coordinates and the geographic latitude, longitude, and azimuth angles eliminates the possibility of setting up some simple tables that would yield worldwide results of sufficient accuracy. Tabular results for specific stations can easily be produced or could be represented in graphic form

    Explanation of the computer listings of Faraday factors for INTASAT users

    Get PDF
    Using a simplified form of the Appleton-Hartree formula for the phase refractive index, a relationship was obtained between the Faraday rotation angle along the angular path and the total electron content along the vertical path, intersecting the angular at the height of maximum electron density. Using the second mean value theorem of integration, the function B cosine theta second chi was removed from under the integral sign and replaced by a 'mean' value. The mean value factors were printed on the computer listing for 39 stations receiving signals from the INTASAT satellite during the specified time period. The data is presented by station and date. Graphs are included to demonstrate the variation of the Faraday factor with local time and season, with magnetic latitude, elevation and azimuth angles. Other topics discussed include a description of the bent ionospheric model, the earth's magnetic field model, and the sample computer listing
    corecore