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1. Computation of the M Factor

Faraday rotation measurements between station and satellite are
affected by both the earth's magnetic field and the ionosphere, but can
be reduced with the aid of proper conversion factors to a measure of the
ionosphere alone. The INTASAT satellite transmits plane-polarized
signals at 46. 01000 and 40. 01025 MHz, These irequencies are much
higher than the electron collision frequency and the gyro~ and plasma
frequencies in.the ionosphere; thus, a 'guasi-longitudinal’ approximation
will hold for propagation in all directions making angles of less than
about 89.5° with the earth's magnetic field, Using a simplified form of
the Appleton-Hartree formula for the phase refractive index, a relation-
ship can be obtained between the Faraday rotation angle along the anéular
path and the total electron content along the vertical path, interéecting

the angular at the height of maximum electron density.
K : Ko™ '
Qz;gSBcosBNds =--S B cos 0§ sec ¥ Ndh (1)

]

fz

Qg

(0 = Faraday rotation angle in degrees

K= 1.699 = constant

f = signal frequency in hertz

B = earth's magnetic field strength‘in ampere-turns/m

angle between direction of propagation and earth's magnetic field

B =
¥ = zenith angle
N = electron density in electrons /m®

s = path length in m
= height above surface of earth in m

.= upper integration lirit is the height of the INTASAT satellite

Using the second mean value theorem of integration, the function
B cos O sec ¥ is removed from under the integral sign and replaced

by a 'mean' value,

s B |
K S Ndh:—?z—MNT (2)
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M ‘mean' value of (B cos 8 sec ¥ ) in ampere-turns/m

H

Ny vertical total electron content in electrons/m® column

The conversion factor M is obtained from both of the above expressions

for 0 as,

hy
Qj B cos B secX Ndh - ' (3)

h
J'“Ndh
[«]

The integrals are evaluated in computer mode by generating the electron

™M =

density N and the function (B cos 8 sec X N) at various height intervals
‘“and nuxﬁe rically integrating by Gaussian guadrature, The ele c‘tron de?nsity
at each height }.llis calculated.by the worldwide Bent Ionospheric profile
model (Reference 1l &2) Each parabolici and exponential segment of the profile
was integrated separately with a varying number of points to achieve
maximum accuracy. A total of 23 points was used to evaluate the integrals
defined in equation (3), The components of the magnetic field strength
are obtained by a spherical harmorﬁc analysis routine as described in
Appendix B. The assumption of straight line propagation through a
spherically stratified ionosphere was made. No bending corrections were.
calculated as this wéuld have required a prohibitive amount of computer
time, At the INTASAT frequencies, bending isa second order.effect.
Given the straight line propagation assumption the zenith angle at each
height h then becomes a function of the ground elevation angle, and the
angle B is calculated using the station and satellite positions and the

direction of the magnetic field,

2.  Computer Listing of the ‘™M Factor

The M factors are printed on the computer listing for 39 station receiv-
ing signals from the INTASAT satellite during the specified time'peﬂod.

The data is sorted by station and date.

For each day the visible satellite passes are numbered sequentially

starting at one. [If the satellite is continuously visible past 24 hours, the
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last pass of the first day will only be pa rfial. However, the first pass of
the following day will list the complete pass, repéating the data from the
first dayandflagging the time column by * to indicate the day change.

The Greenwich Mean Time for each day runs from 0 hours O minutes

0 seconds to 23 hours 59 minutes 59 seconds, Time values of 23:59.5G.5
or greater, but less than 24:00:(30 are rounded to 24:00.00,

The ionospheric pierce point is printed as the latitude and longitude
at which the angular ray passes through the maximum electron density
along the path. A.t this location, the ionospheric profile is computed by
the Bent‘model as required for the computation of M. The M faActors are
. listed in units of ampere-turns /m, and related to Gauss units by 1Gauss =
79.58 ampere-turns/m, If the M value is flagged by *%, the angle 8 between
the direction of propagation and the magnetic {ield has obtaingd values
between 89,5°=8= 90, 5°, for which the equation relating the-F_araday
rotatioﬁ and the total electron content is no_.longer valid, If this condition
occurs above 1000 km, an estirnate for M is computed using the same
eguation; if the condition occurs below 1000 km, howéver, M is not

computed and a zero value is printed.,

Total vertical electron content N; (el/m®)is reduced from the Faraday-
rotation measurement () (deg. ) using the M factor (amp-turns/m) by,

KO . .
N; =M , . (4)

where f is the signal frequency (Hz) and K=1.699 is' a constant,

An example of the computer listing is given in Appendix C,

3, Variation of the Faraday Factor

A number of graphs are included to demonstrate the variation of the
Faraday factor with local time and season, with magnetic latitude, elevation
and azimuth angles. The effect of typical day to day fluctuations on the
Faraday factor due to sudden increase and decrease in the ionosphef;c
density and height are shown as well as the changes in the angle between
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the direction of propagation and the magnetic field lines.

As frequently used for convenience, the Faraday factor F in

the Figures is the quantity computed from,

Ny (e/me) = F{){degrees}, : ' (53
giving the direct conversion for-the angular measurement to the vertical
content for a signal frequency =137 MHz. The relationship to M is given

by, ' i
£ 1.105x10*° A 6)
KF ~ F(l/m°degrees)’ .

M (amp. -turns/m) =

Figures 1 through 5 point out the importance for modeling the Faraday
factors correctly with respect to the. station position, where the magnetic
latitude is of most significance, and with respect to the direction of obser- |
vation, since the elevation and azimuth angles dete.rmine the direction at
which the magnetic field lines are intersected as well as the location at
which the wave passes through the densest part of the ioﬁosbhere. Less

“Important are the specific season and diurnal i'nflue-nces'p'roducing variations
of only about 2 to 6% in the Faraday factors, as -well as the day to day
prediction errors in f F2 having even less effect. However, prediction
errors in lonospheric height which could easily be caused by sudden day
to day changes, can have a significant influence on the Faraday factors '
especially for obse rvations along angular paths. Variations of + 100 km
in heig‘h? are not uncormmon particularly in the equatorial. region. Errors
of 5% in the Faréday factor are typical for paths at vertical incidence,
but as shown in Figure 3b. for angular paths errors of around 30% in
the Faraday féctor might occur resulting in proportiénally large errors
in Ny, since Ny =FQ. The predicted values of the height of maximum
electron density obtai-ned from fhe Bent model are on averége within the
accuracy of the measured values, which considering instrumental and
reduction techniques, are about 15 km, Howevei‘, the day to day variations
are quite a bit larger, and on occasion, deviations in the predictions of

100 kim from the height measurements have been noted,
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For a number of stations and observation angles Figures ba-e. demon-

strate the behavior of the angle 6 between the direction of propagation

and the earth's magnetic field lines between heights of 100 and 1000 km.
For fixed station positions and elevation angles the 8 angle versus height
curves are shown for various azimuth directions. When the condition
89.5°<8=90,5° occurs, the equation relating the Faraday .rotation angle
and vertical electron content no longer holds true. When O passes through
30° at a certain height, the wave experiences rotation (;f the polarization
vector in one direction from the satellite down to that height, and rotation
in the opposite direction below that height. Contributions to the rotation |
of the polarization vector in reversed directioﬁs cancel out, thus the .
measurement is VI;‘lOt représent.ative of the ionospheré between the satellite

and the station.
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Figure 2, Effect of Increase and Decrease in {;F2 on the
Faraday Factor for a Vertical Path.
Station Position = 68.6°%279.4°, Date = 16 March 1967,

=7- .



Faraday Rotation Factor
(1*Ym® deg) -

4100 o
4000 4
h, ++100 km -
3900 A o
5.4% diff.
3800 '
/ % Aiff. v
3700 - predicted h,
3600 A /
h, -100 km
3500 0 i 8 12 16 20
UT (hours)

Figure 3a. Effect of Increase and Decrease in the Ionospheric Helght
on the Faraday Factor for a Vertical Path,
Station Position = 28,6°, 279.4°, Date=16 March 1967.
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Figure 5a. Variation of the Faraday Factor with Changes in Elevation
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APPENDIX A

DESCRIPTION OQF THE BENT IONOSPHERIC MODEL

A:l1 Ionospheric Model Development

For several years scientists have investigated many different
approaéhes to m’odeling' the ionospheric profile on a theoretical basis. The
names and types of these methods are well known and will not be discussed here,
but it is obvious after all the years that a good ti’xeoretical ionospheric profile -

still does not exist.

The object of our past investigations was to come up with an ionospheric
Proﬁle-that could give much improved results for refraction corrections in -
satellite communjications to ground or to another satellite than had been obtained

. with the Chapman and many other theoretical profiles, It would have been
pointless for us to sit down and inve stigéte another theoretical approach when
SO ™Mmany more compétent scientists are working on this problem; For this
reason we decided that in this present timeé of computérs,an efnpirical model

taken from a vast data base may provide us with the profile we were looking for.

It was our intention to acquire iOnospheric data of any kind that helped
us build up a data base covering minimum to nﬁéximum of a solar cycle and
providing information up to 1000km. The lower layers of the ionosphere were
neglected in terms of their irregularities although their electl;on content wés.
added into .the larger F layer; this was done to simplify the approach and as
the prime objective was to obtain refraction corrections through theA ionosphere,
or at least to a point above 150 km, such an elimination would not be very

detrimental,

Data from bottomside ionosphleric sounders waé obtained over the ‘
yvear 1962 through 1969 covering 14 stations approximately along the American
longitudes having geographic latitudes 76 degrees to -12 degrees or magn.efic
latitudes 85 degrees to 0 degrees., This data lwas in the A'form of hourly profiles
of the ionosphere up to the foF2 peak. Topside ééundings were acquired for
the years 1962 to 1966 covering the magnetic latitude range 85 degrees to
-75 degrees and providing electron density profiles fro;—n about 1, 000 km down

to a height just above maximum electron density. As the topside data was

~19- ORIGINAL PAGE I8
OF POOR QUALITY



#not available near the solar maximum,electron density probe data was
obtained from the Ariel 3 satellite over the period May 1967 to April 1968
Irom 70 degrees north to 70 degrees south geographic latitude and linked

in real time to foF2 values obtained from 13 stations on the ground,

A.1.1 Ionospheric Profile

In order to analyze the vast amount of data that was obtained a number
. of assumptions had to be rﬁade. -In the first case the topside sounding data
did not geographically cover the entire globe and the bottomside data was -
only available for land masses and not over tiue oceans; however, as a local
| time effect is far more significant-than a longitude effect, the data was |
"analyzed as a funcfion of 1at'1tudg and local time. Geographic ]ongitude was,
however, taken into aécount for the determination of maxirﬁum electron density
by using the ITS coe'f_ficients for £,F2 which are a function of latitude, longitude,
'tiﬁe and solar acti‘{rity. -Secondly a theoretical'p'ro_file was determirned to which
'the data would fit. This p‘roﬁle which is used in the evaluation discussed later,
is shown in-Figure 7 and is the -result of earlier work by Kazantsev {Refere nce 4},
and unpﬁblished work of Bent (1967) while at the Radio and Space Research
St.'ation in England and requires the knowledge of the.pararlneters‘kl Sk ks,

Yis ¥y, IoF2, and h,. The equation of the upper topside is expoenential, namely,

N = Nye ** ,

the lov.fer ionosi)hezeis a bi-parabola,

LAY )
DN

and the top and bottomside are fit together with a parabola,

N =N, (1-

2

- S
N =N, (1 y’f) ,
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-where,

N is the electron density

N, ‘18 the maximum value of electron density

N, is the maximum electron density for each exponential
layer ' :

a and b are vertical distances

Y, is the half thickness of the lower layer
Y, 1s the half thickness of the upper parabolic layer
k is 'the decay constant for an exponential profile.;

* The upper parabola extends from the heipght Df the maximum eléétron :
density up to the point where the slope of the parabola matches the slope of
the exponential lc;xyer The data investigatéd includea over 50, 000 topside
soundings, 6, 000 satelhte electron density and related fOFZ measurements

and over 400, 000 bottom51de soundlngs

A 1.2 Topside Jonosphere

The initial approach was to take the -topsi&e soundings and Break them
down into zones 5 degl;ees of Jatitude by 40 minutes of local time eliminéting
data in the same zones that have similar times and profiles, and therefore
are duplicated, This resulted in over 1,200 different areas in the northern
and southern. hemlsphere with a reasonably constant density of data in each
area. By these means it was possible to investigate the decay constant k
in the exponential topside profile as a function of local time,‘rlatituae, solar
flux, sunspot number and season, One of the major concerns was whether
the decay constaﬁt k would be uniform for each sounding over the range
1, 000 km to the minimum height, and investigations showed that such an
exponential profile does not exist. The layer was, fherefore, divided into
three equal height sections from 1, 000 km to the minir;mrn r-ecorded height
and the exponent k computed for the center point in each section. Figure 7
shows such a division where the values under investigation are the decay con-

‘stants Kk, k,, k:a In most cases the topside soundings do not reach the height
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of maximum electron density and therefore the gradient at this lower point was
-mathematicﬁlly equated to the point where the gradient of the 'nose’ parabola
was the same. Extensive analysis of the acquired data showed these érédients
to be‘ similar, on average, ata height y, /4 above the maximum. electron density.
At this point tﬁe value of koZ which defines the lowest point of the topside

sounding, is 0.93 foF2. (No in Figure 7 is the equivalent electron density to
the frequency koZ).

Tor an initial test the decay constants k for each of the three layers, upper,
middle, ana lower topside were plotted as 2 function of magnetic jatitude and
L, ¥F2, Valunes {rom the borthern and southern hemispheres were treated mdepen-
dently at firsi;., but the analysis showed thét there was excellent correlation
between the two. Figure 8 shows the relationship between the thrée decay
constants k and magnetlc latitude for alllocal times, solar activitj, and season,
The equatorlal anomaly and a 40 degree trough show in the lower topside l.ayer.
The 65 degree trough 1s not a5 evident as it-is when the same analysis is done
for various local times which sugge sts the physical variances of these anomalies

should be i‘nvestigated in rnore detail.

It was found that correlations in k for specific fy F2 did not bear any
further local time correlation, but bore a sigr.zilﬁcant variation with solar
activity and magnetic 1at'1tude. However, the correlation with solar flux was
con51derab1y better than that with sunspot number, even allawing for the delay
in the effect reaching the 1onosphere "so all further correlatlons were with
the Ottowa 10.7 cm  solar flux. All these correlations were then plotted in

graphiéal form to enable fimml interpolation.

Unfortunately the Alouette data did not cover the period at the peak of
the solar cycle, but the Director of the U.K. Radio & Space Research Station
made available electron density data from the Ariel 3 satellite to cover this -
period. The data had already been reduced thoroughly and the satellite electron
| density at about 550 km was provided with the sub- satelhte f,F2 value obtained

from 13 stations around the world, If the satellite was not directly over an

-
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ioposonde at the time of observation, the foF2 values from two or three
transmitters in the general area had been interpelated in time and position to
give the’ sub-satellite value, 'I‘.;hese interpolé.tions_ had been carrield out taking
care to modify the values for uneven ionospheric gradients, Data that was in
doubt was elirﬁinatéd. While these values did not give the three exponential
decay constants at each point, it was found that for similar conditions of solar _
flux and position, the Ariel 3 data fit very closely to the profiles deduced

from Alouette 1. The profile equations developed for the lower so]ar activity
period related to the topside sounders could, therefore, be extended to the
larger solar flux values and still be in good agreement with the Ariel 3 data.
Typlcal results from this analysis are shown iz the graphs of qure 9. The
orlgmal data curves were less regular, " and since the variations werTe main.'ly
caused by the relatlvely low data density in each group after division of the
large data base, the data was smoothed by the fitling of straight hnes..In-

order to interpret these graphsl and obtain a profile, we need the value of {,F 2.
2nd the magnetic latitude position. These values will indicate which graph
relates the 10.7 em flux to the decay constants k for the upper, middle, and
lower portions of the topside ionosp'here.. ’Figufe g, the-refore, shows the basis
of obtaining the 3 independent slopes of the topside ionosphere as a function of

foF2, latitude, and solar flux.

A further correlation to investigate the seasonal effects on k was carried
out with some 15, 000 totally different Alouette soundings and ﬁuctuatioﬂs in the
K values of T 15% were noted from the average spring and autumn values, The
seasonal variation is monitored by obserrving the change -in the daily maximum
csolar zenith angle flrc-)m the equinoctial mid-day value, Figure 10 shows the
seasonal fluctuation in k for each of the three layers in the topside pr'ofile.l
There is considerable evidence tb;t this seasonal relationship has an addéd

local time factor and this point will shortly be under inves'tigation..

Examination of the upper part of the'nose' of the N-h profile is difficult

because topside sounding information rarely gives any values in this region.
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Evidence from many leading scientists also implies that the topside profiles
have about a +4% error in the efiective distance from the sounding satellite.
indicating the obtained topside profiles are too low near the peak. Thxs
evidence is based on comparisons with two- frequency data, backscatter,
results, Faraday rotation and overlap tests, etc. Preliminary results in
this empirical model showed that a parabola in this 'region gave thé better
comparison with integrated total electron content when compared with two_:
frequency and Faraday rotation data, A simple parabola having a half thick- _
ness y, was fitted between the bi-parabola and the exponentiai layer. 7 Updn
initial test y, was set eqgual to the half .thickness of the bi- parabola y,- for foF2
values below 10.5 MHz, and y, increases with 1,F2 values rising above.

10. 5 MHz. Further 1nvest1gat10ns of this problem are planned in future’ work.
The final step in predicting the shape of the iohosphére is arranging for
the gradient in the upper parabolic léyer to be the same as the gradient in

the lowest part of the topside exponential layer. This is the case at a distance

=1/k [ (1+yE k‘?):a _1] above the height of the maximurn elec‘tron densﬂ:y

A, 1.3 Bottomside Ionosphere

Modeling thé__ bottomside ionospheric profile ';rwas a somewhat easier
task.'BecauSe-for, each profile the value of {;F2 was known and the electron
density versus height profile from h ,,toh,, was also known, Once more the
‘geograpﬁic effect of longitude was eliminated and replaced with the more Simple
1ocal time correlation. From Figure7 we see that the equation of the lower
layer is a parabola squared or a bi-parabola, This wa-s founld in gé:ne.ral _té
fit the real profile somewhat better than a simple parabola,  The unknown in
this equation is the half. thlckne ss of the layer y; and in the reductlon of the

data the y, value was treated in a similar way to a topside 'k value,

The irregularities-in the ionosonde data due to the lower layers of the
ionosphere were smoothed out because the prime objective. of the work was to

simplify the model, but keep the total content as accurate as pos 51b1e _The .

- ORIGINAL PAGE I8
-24- OF POOR QUALITY,



sounding data was therefore integrated up to the peak electron density (N_)and
forced to fit the bi-parabolic equation along with the value of N, obtained from

the sounding. In each instance the value of y, was computed ready for further
correlation.

A number of real profiles from various stations at différent Ioéal times
were compar'ed with the computed profile and excellent Aagr_eel_'nent found,
A further 12, 000 soundings from all 14 stations were analyzed and the ‘compu-ted
value of y, compared to the actual measufed value. These results are shown h
in Figure 1l along with the RMS errors, .The two tests indicate that the bi- -
parabolic profile is, on average, -in close agreement to the real profile,
Investigations, simiiar to those carried out for the 1:opsi<ile-dc—z-::.’:w.y‘r constants,
correlated y, with solar flux fo F2, local time -and season, Surprisihgly, -
no direct correlation was found between y, and solar flux, but a definite
correlation existed in local time and also in the solar zenith angle at local noon

which represents the season.

Figure 12 indicates how y, can be determined from local time and fFe,
and Figure I3 shows the seasonal update as a function of local time for the

sunrise, sunset, nigiﬁt and daytime period. In the cases where f,F2 was

larger than 10 MHz the local time curve fluctuated very little from the 10 MH=z
curve. All of the curves displayed have not been hand smoothed; due to lthe -
large data base the average of all values taken every hour fit precisely on

the lines shown.

The remaining unknowns which are needed to Computé the profile are
foF'Z2 and the height of that value; by far the most important of these being
the value of { F2, -

- -25-



A.1.4 Predicting { F2

Severe horizontal gradients in fOFZ exist within the ionosphere as can

be seen by examining Figurel4 In fact even if the value of foF2 1s known

directly above a station, it can change considerabljov_er the whole ‘visible’
" jonosphere from that site. Figure 4 is a predicted status of {oF2 over the
world-at 6.0 am during Augu‘st 1968 and two types of severe gradients are '

immediately noticeable, one due to sunrise causes rapid changes in {,F2in an

east to west direction and the other situated around the equatorial anomaly .
occurs primarily during the afternoon and early evening and causes severe
gradientrs in the north to south direction. Tw;) hypothetical statiéns, A and B,
~ are ﬁarked on Figure M along with the ionosphere 'visible' from those sites.
‘In case A-the value of foF2 change.s from 11.5 MHz directly overhead to 5 MHz
on the southern horizon. This change must be squared when converting to o
electron content he,nc:e a difference of a fécto-r of over 5 in the vertical content
"arises before correcting for elevation angle effects. Similar gradients exist
over half the earth's surfaée at some ‘éime of the day énd it is therefore

imperative to model thesée gradients in any jonospheric model,

For many years NOAA {formerly CRPL and ITSA).have been engaged
in the development of nurnerical methods and computer programs for mapping
and predicting characteristics of the ionosphere used in telecomrmunications.
The most advanced method for producing an {,F2 model undoubtédly comes
from their work. Jones, Graham & I,.éftiﬁ (Reference 2 ) describe their
techniqﬁes on fmw a monthly median of the F2 la;.yér critical frequency ({pF2)
was developed from an extremely large worldwide data base. In fact the gradienf
map shown in Figure 14 is a result of this wérk'.' We have already shown. that it :

is important to include the horizontal gradients of {oF2 in any analysis and the

work by Jones et al is undoubtedly the only satisfactory approach to this problem.

The document by Jones et al describing this work includes a Fortran
program which, with monthly coefficients obtainable from NOAA, 'enables the

monthly median value of {,F2 to be computed above any point in thé world at
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any time, This program was primarily written to accept monthly coefficients
using an average sunspot number, but more recent work by Jones & Obitts
(Reference 3. ) has described a more generalized set of coefficients which
provides annual continuity and uses more extensive analysis., These generalizéd
coefficients can be obtained from the 10nospheri.cl Prediction Selrvi_ces, NOAA,
Boulder, for a sunspot number or a solar flux approach. The value of a monthly
median {,¥2 can be computed on a worldwide basis centrﬁli_zed around the specific
day in question rather than the 15tk of the month; it can alsc; be based on a

12 _-month running average of solar flux or sunspot number. Private communi-

cation with Mrs. Leftin at NOAA indicates that the solar flux approach is likely

to provide more accurate values of {;F2 than the use of the sunspot number. -

for the iénospheric profile under discussion, it was decided to use the
generalized fgF2 coefficients {rom NOAA incorporating solar flux thereby
eliminating any need to purchase monthly data from them. The program was
made self-contained and enabled a monthly- median fOFZ to be produced above |
any surface position for any time of day or season and aﬁy twelve month

‘running average of solar flux.-

The question now arises as to how good these monthly median values
‘are and how much error is introduced by day tol day ﬂﬁc-tuations.-' Mahy} tctlail);r
soundings were analyzed and the monthly median value computed; these were
compared with the monthly median predicted values aﬁd the actual day to day -
fluctuations. Some typical results are shown in Figure 15, It is seen that the
monthly médian predicted valueé are indeéd' very close to the actual measured
value, but the day to day fluctuations can be las large as 1 75%. ‘ A technique
therefore had to be derived to bring the computed monthly median value closez;

to the actual value,

‘It would be pointless to use the daily value of solar flux in the generalized
coefficient set which had been built up using a twelve month running average,

but it was thought possible that there may be a relaticn between the difference

in ;[DFZ from monthly median to daily value and the difference in the _12__month

running average of solar flux to the daily value.
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Approximately 6, 000 real values of {,F2 from 13 stations widely spread
in 1at1tude longitude, and solar cycle were compared with the predicted values
using the NOAA solar ﬂux method, A very surprising result emerged and can
be explained by referring to Figure 16. Eliminating the data from stations
close to the magnetic poles which did not quite follow the trend of the other
stations a ‘comparison between the difference in daily and 12-month flux value
and the percentage difference of computed and measured foF2 showed all stations .
having a very similar bias, Figure 16 shows this comparison where the stations
having similar latitude were averaged quoti.ng theil; mean magnetic latitude, The
fact that the lines did not pass through the zero points in the graph undoubtedly
indicates an efroneous bias in the NOAA-predictio_ns. but results help one to

update substantzally the monthly median f_F2 value on a daily basis. Further
Compansons were carrled out with two years of hourly f, F2 values obtained near:
solar maximum Ifrom Hawau and the results fit perfectlyin the 1at1tude pos:Ltlon
expected in Figure 16. By these means it is possible to come sor_newhat nearer
tne acrual aally value of fOFZ_ Furthe_r accuracy caﬁ be. (':lerived by upd'ate
from stations within the general area if this is available and the in;estigation

of this approach will now be explained.

In order to*invgstigate the size of an area from which ionosphericvalues
would show similar deviations from normal, many comparisoans of three or
more stations were investigated for random dates. It is well known fhat
rpagnetic disturbances-can effect the ionosphere above one station in one
direction and a nearby station in an opposite direction, For this reason
investigations of dlsturbances were not carried out near to the magnetic poles
Over 100 groups of stations from various continents and hav1ng sirmnilar
longitudes were compared in similar ways, Figure 17 is a typical result of
such a test and shows foFZ disturbances being recorded S'imultaneously.at'

sites 1, 000km apart, The percentage error in the predicted foFZ value when

compared to the real value was noted to be similar in 90% of the cases where- -
stations were within 2, 000km of one another in a longitudinal direction and

investigations over the ‘quiet" North American continent show improvement
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in 9 out of 10 cases when foF2 was updated with information from across the
continent; or 3, 000.te 4, 000km, " However, in general, the update procedure

is restricted to information from within 2, ODOkrh of the evaluating', station,

A, i. 5 Predicting the Height of the Maximum Layer

In order to predict the real height of f;F2Z the M{3000)F2 predictions from

'NOAA were used, To explain the terminology:
M(3000)F2 = M FACTOR = MUF(3000)F2 /{,F2,

where MUF(3000)F2 is the maximum usable frequency to propagate by
reflection from the F2 layer a distance of 3, 000km. The M (30C0)F2 prechctlons
can be calculated on a monthly basis from a generalized set issued by NOAA

and provide the monthly median value as a function of rsunspo't numbper,

Knowledge of this factor aloﬁg with the {,F2 value enables the height of
the layer to be calculated us.ing the emuatioﬁs of{ Appleton & Beynon (Reference 1 3.
I M s the M(3000)F2 factor and one assumes that y, divided by the height of
the bottorn edge of the lower ]ayer is greater than 0, 4, then it is p0551b1e to

derive the following polynomial,
h = 1346,92 - 526.40M + 59.825M ,

where hy is the required height..

A 2 Model Accuracy

As a means of testmg the accuracy of the model, an intense comparison
with Faraday rotation data has been performed as well as tests with two
frequency data, actual ionospheric profiles, and use in orbit determination

programs.

Remarkable improvements have been noticed in precise- orbit determination
systems and the model bhas reduced the number of iterations needed for the

program to converge as well as the size of the residuals by up to a factor of
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four. E=xcellent results have been noted with orbit programs using elevation

angle, range and range rate systems,

The most extensive tests were carried out by comparing Faraday rotation
data for seven stations from Hawaii to Puerto Rico to Alaska‘looking at the
ATS1, ATS3, and SYNCOMS3 satellites, In all, over 100 station months of
continuous data were used during the years 1965 and 1967-1969 with data
taken every hour. The integrated model data was compared with these actual
results; update situations were aiso investigated. The results are shown in
Figure 18 where the percentage of the ionosphere removed with the model
is shown, In general, between 75 and 90% of the ionospheric effects are

removed and these circumstances are for solar maximum conditions,
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APPENDIX B

B.1 Earth's Magnetic Field Model

The model computes the earth's magnetic field components at a
desired location following the spherical harmonic analysis of the
magnetic field by Chapman and Bartels {Reference 1) and using the
coefficients gf, hy given by Jensen and Cain {Reference 2) for Epoch 1960;
The X-north, Y-east, and Z-vertical {up) components of the magnetic
field are computed for any location, defined by its latitude ¢, longitude A,
and height h above the earth's su‘rfgce. Introducing the colatitﬁde
@0=90°-¢ and the ratio R=R, /(R,+h), Whére R, is the radius of the earth,

the components X, Y, Z are given by,

X z {R“+2 i‘ l—— P, a (c:ostp) [gn cos(-m1)+ h“‘-sm(rnl'k)j.L

e e e o e g o ]}
=1 ‘ . -

z = E {(n.+1) R**2 E P,,. (cosp) [ g3 cos(md)+ b} sintmu]}

= v =0 -

The multiple of the associated Legendre function is given by,

Py, 5 (c05®p) = sin" @ [COSDF o - ('DZ—{I;n)(-,I;_)m-” coS““mh‘C?D
(n-m)n-m-1)}n-m-2)n-m-3) N o
* {2)(4) (2n-1)(2n-3) °°.5 @ e ]

. 1. S.Chapman & J. Bartels, "Geomagnetism," Vol II, Oxford at the
Clarendon Press (1962),

2, D.C.Jensen & J.C,Cain, "Iterim Geomagnetic Field, " J, Geogr,
Res.,No. 9, 3568-3569 (Aug. 1962) ,
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The flags in the GMT and MBAR columns are explained in Section 2,



