47 research outputs found

    A systematic review of the effect of footwear, foot orthoses and taping on lower limb muscle activity during walking and running

    Get PDF
    Background: External devices are used to manage musculoskeletal pathologies by altering loading of the foot, which could result in altered muscle activity that could have therapeutic benefits. Objectives: To establish if evidence exists that footwear, foot orthoses and taping alter lower limb muscle activity during walking and running. Study design: Systematic literature review. Methods: CINAHL, MEDLINE, ScienceDirect, SPORTDiscus and Web of Science databases were searched. Quality assessment was performed using guidelines for assessing healthcare interventions and electromyography methodology. Results: Thirty-one studies were included: 22 related to footwear, eight foot orthoses and one taping. In walking, (1) rocker footwear apparently decreases tibialis anterior activity and increases triceps surae activity, (2) orthoses could decrease activity of tibialis posterior and increase activity of peroneus longus and (3) other footwear and taping effects are unclear. Conclusion: Modifications in shoe or orthosis design in the sagittal or frontal plane can alter activation in walking of muscles acting primarily in these planes. Adequately powered research with kinematic and kinetic data is needed to explain the presence/absence of changes in muscle activation with external devices. Clinical relevance: This review provides some evidence that foot orthoses can reduce tibialis posterior activity, potentially benefitting specific musculoskeletal pathologies

    EMG gait data from indwelling electrodes is attenuated over time and changes independent of any experimental effect

    Get PDF
    The effect of time on the validity of electromyography (EMG) signals from indwelling fine-wire electrodes has not been explored. This is important because experiments using intramuscular electrodes are often long and biochemical and mechanical factors, may impair measurement accuracy over time. Measures over extended periods might therefore be erroneous. Twelve healthy participants (age=33±8 years) walked for 50 minutes at a controlled speed. Fine-wire electrodes were inserted into tibialis anterior and a surface EMG sensor attached near the fine-wire insertion site. EMG signals progressively and significantly decreased with time with the fine-wire electrode, but not the surface electrode. For the fine-wire electrode, after 25 minutes mean amplitude had reduced by 11% (p<0.001) and after 50 minutes by 16% (p<0.001), and peak amplitude reduced 22% at 20 minutes (p=0.006) and 37% at 50 minutes (p<0.001). Reduced amplitude with indwelling EMG without concurrent changes in surface EMG signal suggests an important inconsistency in data from fine-wire EMG electrodes. Changes in EMG signal will occur over time independent of the experimental condition and this questions their use in experiments of more than 30 minutes. These results should impact on experimental study design. They also invite reinterpretation of prior literature and sensor innovation to improve measurement performance

    No change in foot soft tissue morphology and skin sensitivity after three months of using foot orthoses that alter plantar pressure

    Get PDF
    Altering plantar load using foot orthoses (FOs) may alter the mechanical work required of internal structures and change the size of muscle and connective tissues. Skin sensitivity might also change as a result of altering mechanoreceptor stimulation. This study investigated the effects of FOs on foot soft tissue morphology and skin sensitivity over three months of use. Forty-one healthy participants wore pre-fabricatedprefabricated FOs (n=23) or no insert (n=18) for three months. The FOs were prescribed specific to each participant, using criteria of a change in peak pressure of 8% in the medial arch (pressure increase) and medial heel (pressure decrease). Ultrasound images were recorded pre- and post-FOs use to derive cross-sectional area and thickness of: abductor hallucis, flexor hallucis brevis, flexor digitorum brevis and the Achilles tendon at the insertion and mid-portion. Plantar fascia thickness was measured at the insertion and midfoot. The minimal detectable difference was established in piloting (n=7). Skin sensitivity was measured with monofilaments at the dorsum (between the hallux and second toe), medial and lateral heel, medial and lateral arch and the 1st metatarsal head. The FOs increased peak pressure by 15% in the medial arch and reduced it by 21% in the medial heel. None of the changes in soft tissue measurements was greater than the minimal detectable difference and there were no effects of group and time. Skin sensitivity decreased over time at the 1st metatarsal head for both groups, but there was no group effect. Using FOs over three months did not change the foot tissues nor skin sensitivity. This study challenges the notion that FOs make muscles smaller

    Foot orthoses: how much customisation is necessary?

    Get PDF
    The relative merit of customised versus prefabricated foot orthoses continues to be the subject of passionate debate among foot health professionals. Although there is currently insufficient evidence to reach definitive conclusions, a growing body of research literature suggests that prefabricated foot orthoses may produce equivalent clinical outcomes to customised foot orthoses for some conditions. Consensus guidelines for the prescription of customised foot orthoses need to be developed so that the hypothesised benefits of these devices can be thoroughly evaluated

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    An explorative qualitative study to determine the footwear needs of workers in standing environments

    Get PDF
    Background: Many work places require standing for prolonged periods of time and are potentially damaging to health, with links to musculoskeletal disorders and acute trauma from workplace accidents. Footwear provides the only interaction between the body and the ground and therefore a potential means to impact musculoskeletal disorders. However, there is very limited research into the necessary design and development of footwear based on both the physical environmental constraints and the personal preference of the workers. Therefore, the purpose of this study is to explore workers needs for footwear in the ‘standing’ workplace in relation to MSD, symptoms, comfort and design. Method: Semi-structured interviews were conducted with participants from demanding work environments that require standing for high proportions of the working day. Thematic analysis was used to analyse the results and gain an exploratory understanding into the footwear needs of these workers. Results: Interviews revealed the environmental demands and a very high percentage of musculoskeletal disorders, including day to day discomfort and chronic problems. It was identified that when designing work footwear for standing environments, the functionality of the shoe for the environment must be addressed, the sensations and symptoms of the workers taken into account to encourage adherence and the decision influencers should be met to encourage initial footwear choice. Meeting all these criteria could encourage the use of footwear with the correct safety features and comfort. Development of the correct footwear and increased education regarding foot health and footwear choice could help to reduce or improve the effect of the high number of musculoskeletal disorders repeatedly recorded in jobs that require prolonged periods of standing. Conclusion: This study provides a unique insight into the footwear needs of some workers in environments that require prolonged standing. This user based enquiry has provided information which is important to workplace footwear design

    Development of the infant foot as a load bearing structure : study protocol for a longitudinal evaluation (the Small Steps study)

    Get PDF
    Background An improved understanding of the structural and functional development of the paediatric foot is fundamental to a strong theoretical framework for health professionals and scientists. An infant’s transition from sitting, through crawling and cruising, to walking is when the structures and function of the foot must adapt to bearing load. The adaptation of skin and other hard and soft tissue, and foot and gait biomechanics, during this time is poorly understood. This is because data characterising the foot tissue and loading pre-walking onset does not exist. Of the existing kinematic and plantar pressure data, few studies have collected data which reflects the real-life activities of infants with modern equipment. Methods This is a longitudinal study and part of the Great Foundations Initiative, a collaborative project between the University of Brighton and the University of Salford, which is seeking to improve foot health in children. Two cohorts of 50 infants will be recruited at the two sites (University of Brighton, Eastbourne, UK and University of Salford, Salford, UK). Infants will be recruited when they first reach for their feet and attend four laboratory visits at milestones related to foot loading, with experienced independent walking being the final milestone. Data collection will include tissue characteristics (skin thickness, texture, elasticity, pH and tendon thickness and cross-sectional area), plantar pressures and kinematics captured during real world locomotion tasks. Discussion This study will provide a database characterising the development of the infant foot as it becomes a weight bearing structure. The data will allow effective comparison and quantification of changes in structure and function due to maturation and loading by measuring pre and post established walking. Additional variables which impact on the development of the foot (gender, ethnicity and body weight) will also be factored into our analysis. This will help us to advance understanding of the determinants of foot development in early childhood

    A case-series study to explore the efficacy of foot orthoses in treating first metatarsophalangeal joint pain

    Get PDF
    Background: First metatarsophalangeal (MTP) joint pain is a common foot complaint which is often considered to be a consequence of altered mechanics. Foot orthoses are often prescribed to reduce 1 stMTP joint pain with the aim of altering dorsiflexion at propulsion. This study explores changes in 1 stMTP joint pain and kinematics following the use of foot orthoses.Methods: The effect of modified, pre-fabricated foot orthoses (X-line ®) were evaluated in thirty-two patients with 1 stMTP joint pain of mechanical origin. The primary outcome was pain measured at baseline and 24 weeks using the pain subscale of the foot function index (FFI). In a small sub-group of patients (n = 9), the relationship between pain and kinematic variables was explored with and without their orthoses, using an electromagnetic motion tracking (EMT) system.Results: A significant reduction in pain was observed between baseline (median = 48 mm) and the 24 week endpoint (median = 14.50 mm, z = -4.88, p &lt; 0.001). In the sub-group analysis, we found no relationship between pain reduction and 1 stMTP joint motion, and no significant differences were found between the 1 stMTP joint maximum dorsiflexion or ankle/subtalar complex maximum eversion, with and without the orthoses.Conclusions: This observational study demonstrated a significant decrease in 1 stMTP joint pain associated with the use of foot orthoses. Change in pain was not shown to be associated with 1 stMTP joint dorsiflexion nor with altered ankle/subtalar complex eversion. Further research into the effect of foot orthoses on foot function is indicated. © 2010 Welsh et al; licensee BioMed Central Ltd

    Characterising the biophysical properties of normal and hyperkeratotic foot skin

    Get PDF
    BACKGROUND: Plantar foot skin exhibits unique biophysical properties that are distinct from skin on other areas of the body. This paper characterises, using non-invasive methods, the biophysical properties of foot skin in healthy and pathological states including xerosis, heel fissures, calluses and corns. METHODS: Ninety three people participated. Skin hydration, elasticity, collagen and elastin fibre organisation and surface texture was measured from plantar calluses, corns, fissured heel skin and xerotic heel skin. Previously published criteria were applied to classify the severity of each skin lesion and differences in the biophysical properties compared between each classification. RESULTS: Calluses, corns, xerotic heel skin and heel fissures had significantly lower levels of hydration; less elasticity and greater surface texture than unaffected skin sites (p &lt; 0.01). Some evidence was found for a positive correlation between hydration and elasticity data (r ≤ 0.65) at hyperkeratotic sites. Significant differences in skin properties (with the exception of texture) were noted between different classifications of skin lesion. CONCLUSIONS: This study provides benchmark data for healthy and different severities of pathological foot skin. These data have applications ranging from monitoring the quality of foot skin, to measuring the efficacy of therapeutic interventions. KEYWORDS: Biophysical parameters; Callus; Corns; Dry skin; Heel fissures; Plantar foot skin hyperkeratosis; Quantification; Skin classification (SELs); Xerosi
    corecore