14 research outputs found

    Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis

    No full text
    This study investigated whether integrated analysis of transcriptomics and metabolomics data increased the sensitivity of detection and provided new insight in the mechanisms of hepatotoxicity. Metabolite levels in plasma or urine were analyzed in relation to changes in hepatic gene expression in rats that received bromobenzene to induce acute hepatic centrilobular necrosis. Bromobenzene-induced lesions were only observed after treatment with the highest of 3 dose levels. Multivariate statistical analysis showed that metabolite profiles of blood plasma were largely different from controls when the rats were treated with bromobenzene, also at doses that did not elicit histopathological changes. Changes in levels of genes and metabolites were related to the degree of necrosis, providing putative novel markers of hepatotoxicity. Levels of endogenous metabolites like alanine, lactate, tyrosine and dimethylglycine differed in plasma from treated and control rats. The metabolite profiles of urine were found to be reflective of the exposure levels. This integrated analysis of hepatic transcriptomics and plasma metabolomics was able to more sensitively detect changes related to hepatotoxicity and discover novel markers. The relation between gene expression and metabolite levels was explored and additional insight in the role of various biological pathways in bromobenzene-induced hepatic necrosis was obtained, including the involvement of apoptosis and changes in glycolysis and amino acid metabolism. The complete Table 2 is available as a supplemental file online at http://taylorandfrancis.metapress.com/openurlasp?genre=journal&issn=0192-6233. To access the file, click on the issue link for 33(4), then select this article. A download option appears at the bottom of this abstract. In order to access the full article online, you must either have an individual subscription or a member subscription accessed through www.toxpath.org. Copyright © by the Society of Toxicologic Pathology

    Multiple Endocrine Neoplasia Type 1 (MEN1)

    No full text
    This chapter focuses on multiple endocrine neoplasia type 1 (MEN1) which is an autosomal dominantly inherited syndrome. The syndrome is characterized by the occurrence of tumors of the parathyroid glands, the pancreatic islets, the anterior pituitary gland and the adrenal glands as well as neuroendocrine tumors in various organs. Parathyroid adenomas are often the first clinical presentation of MEN1 and majority of patients develop this adenoma. The genetic pathophysiology of MEN1 involves inactivating germline mutations of the MEN1 gene, located on chromosome 11. The gene is a tumor suppressor and inactivation of MEN1 gene is required for the development of tumors. The method for MEN1 gene mutation analysis involves direct DNA sequence analysis and large deletions encompassing one or more MEN1 exons usually escape detection which necessitates the inclusion of an assay to detect such alterations. Mutation analysis enables MEN1 disease gene carriers to be identified and periodic clinical monitoring makes presymptomatic detection and treatment of MEN1-associated tumors possible

    Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline

    No full text
    A variety of mutational mechanisms shape the dynamic architecture of human genomes and occasionally result in congenital defects and disease. Here, we used genome-wide long mate-pair sequencing to systematically screen for inherited and de novo structural variation in a trio including a child with severe congenital abnormalities. We identified 4321 inherited structural variants and 17 de novo rearrangements. We characterized the de novo structural changes to the base-pair level revealing a complex series of balanced inter- and intra-chromosomal rearrangements consisting of 12 breakpoints involving chromosomes 1, 4 and 10. Detailed inspection of breakpoint regions indicated that a series of simultaneous double-stranded DNA breaks caused local shattering of chromosomes. Fusion of the resulting chromosomal fragments involved non-homologous end joining, since junction points displayed limited or no homology and small insertions and deletions. The pattern of random joining of chromosomal fragments that we observe here strongly resembles the somatic rearrangement patterns--termed chromothripsis--that have recently been described in deranged cancer cells. We conclude that a similar mechanism may also drive the formation of de novo structural variation in the germline. [KEYWORDS: Base Sequence, Child, Chromosome Aberrations, Chromosome Breakage, Chromosomes, Human, Pair 1/genetics, Chromosomes, Human, Pair 10/genetics, Chromosomes, Human, Pair 4/genetics, Computational Biology, Female, Gene Order, Gene Rearrangement/ genetics, Germ Cells, Humans, Male, Models, Genetic, Molecular Sequence Data, Sequence Analysis, DNA]

    Impact of Delay in Diagnosis in Outcomes in MEN1: Results From the Dutch MEN1 Study Group

    No full text
    Item does not contain fulltextOBJECTIVE: Identifying a germline mutation in the multiple endocrine neoplasia type 1 (MEN1) gene in an index case has consequences for a whole family. Eligible family members should be offered genetic counseling and MEN1 mutation testing. Subsequently, clinical screening of mutation carriers according to the guidelines should be initiated. We assessed whether there is a lag time from MEN1 diagnosis of the index case to MEN1 diagnosis of family members. In addition, we determined whether this lag time was associated with an increased morbidity and mortality risk. DESIGN: A cohort study was performed using the Dutch MEN1 database, including >90% of the Dutch MEN1 population >16 years of age (n = 393). RESULTS: Fifty-eight MEN1 families were identified, of whom 57 were index cases and 247 were non-index cases (n = 304). The median lag time in MEN1 diagnosis of family members was 3.5 (range, 0-30) years. At the time of MEN1 diagnosis, 30 (12.1%) non-index cases had a duodenopancreatic neuroendocrine tumor, of whom 20% had metastases with a mean lag time of 10.9 years, in comparison with 7.1 years without metastases. Twenty-five (10.1%) non-index cases had a pituitary tumor, of whom 80% had a microadenoma and 20% had a macroadenoma, with mean lag times of 7.2 and 10.6 years, respectively. Ninety-five (38.4%) non-index cases had a primary hyperparathyroidism with a mean lag time of 9.5 years in comparison with seven patients without a primary hyperparathyroidism with a mean lag time of 3 years (P = .005). Ten non-index cases died because of a MEN1-related cause that developed during or before the lag time. CONCLUSION: There is a clinically relevant delay in MEN1 diagnosis in families because of a lag time between the diagnosis of an index case and the rest of the family. More emphasis should be placed on the conduct of proper counseling and genetic testing in all eligible family members

    Classification of BRCA1 missense variants of unknown clinical significance

    No full text
    Background: BRCA1 is a tumour suppressor with pleiotropic actions. Germline mutations in BRCA1 are responsible for a large proportion of breast–ovarian cancer families. Several missense variants have been identified throughout the gene but because of lack of information about their impact on the function of BRCA1, predictive testing is not always informative. Classification of missense variants into deleterious/high risk or neutral/low clinical significance is essential to identify individuals at risk. Objective: To investigate a panel of missense variants. Methods and results: The panel was investigated in a comprehensive framework that included (1) a functional assay based on transcription activation; (2) segregation analysis and a method of using incomplete pedigree data to calculate the odds of causality; (3) a method based on interspecific sequence variation. It was shown that the transcriptional activation assay could be used as a test to characterise mutations in the carboxy-terminus region of BRCA1 encompassing residues 1396–1863. Thirteen missense variants (H1402Y, L1407P, H1421Y, S1512I, M1628T, M1628V, T1685I, G1706A, T1720A, A1752P, G1788V, V1809F, and W1837R) were specifically investigated. Conclusions: While individual classification schemes for BRCA1 alleles still present limitations, a combination of several methods provides a more powerful way of identifying variants that are causally linked to a high risk of breast and ovarian cancer. The framework presented here brings these variants nearer to clinical applicability

    Multidisciplinary integrated care pathway for von Hippel-Lindau disease

    No full text
    BACKGROUND: Clinical pathways are care plans established to describe essential steps in the care of patients with a specific clinical problem. They translate (inter)national guidelines into local applicable protocols and clinical practice. The purpose of this article is to establish a multidisciplinary integrated care pathway for specialists and allied health care professionals in caring for individuals with von Hippel-Lindau (VHL) disease. METHODS: Using a modified Delphi consensus-making process, a multidisciplinary panel from 5 Dutch University Medical Centers produced an integrated care pathway relating to the provision of care for patients with VHL by medical specialists, specialized nurses, and associated health care professionals. Patient representatives cocreated the pathway and contributed quality criteria from the patients' perspective. RESULTS: The panel agreed on recommendations for the optimal quality of care for individuals with a VHL gene mutation. These items were the starting point for the development of a patient care pathway. With international medical guidelines addressing the different VHL-related disorders, this article presents a patient care pathway as a flowchart that can be incorporated into VHL expertise clinics or nonacademic treatment clinics. CONCLUSIONS: Medical specialists (internists, urologists, neurosurgeons, ophthalmologists, geneticists, medical oncologists, neurologists, gastroenterologists, pediatricians, and ear-nose-throat specialists) together with specialized nurses play a vital role alongside health care professionals in providing care to people affected by VHL and their families. This article presents a set of consensus recommendations, supported by organ-specific guidelines, for the roles of these practitioners in order to provide optimal VHL care. This care pathway can form the basis for the development of comprehensive, integrated pathways for multiple neoplasia syndromes

    Multidisciplinary integrated care pathway for von Hippel–Lindau disease

    No full text
    BACKGROUND: Clinical pathways are care plans established to describe essential steps in the care of patients with a specific clinical problem. They translate (inter)national guidelines into local applicable protocols and clinical practice. The purpose of this article is to establish a multidisciplinary integrated care pathway for specialists and allied health care professionals in caring for individuals with von Hippel–Lindau (VHL) disease. METHODS: Using a modified Delphi consensus-making process, a multidisciplinary panel from 5 Dutch University Medical Centers produced an integrated care pathway relating to the provision of care for patients with VHL by medical specialists, specialized nurses, and associated health care professionals. Patient representatives cocreated the pathway and contributed quality criteria from the patients' perspective. RESULTS: The panel agreed on recommendations for the optimal quality of care for individuals with a VHL gene mutation. These items were the starting point for the development of a patient care pathway. With international medical guidelines addressing the different VHL-related disorders, this article presents a patient care pathway as a flowchart that can be incorporated into VHL expertise clinics or nonacademic treatment clinics. CONCLUSIONS: Medical specialists (internists, urologists, neurosurgeons, ophthalmologists, geneticists, medical oncologists, neurologists, gastroenterologists, pediatricians, and ear-nose-throat specialists) together with specialized nurses play a vital role alongside health care professionals in providing care to people affected by VHL and their families. This article presents a set of consensus recommendations, supported by organ-specific guidelines, for the roles of these practitioners in order to provide optimal VHL care. This care pathway can form the basis for the development of comprehensive, integrated pathways for multiple neoplasia syndromes

    Multidisciplinary integrated care pathway for von Hippel-Lindau disease

    Get PDF
    BACKGROUND: Clinical pathways are care plans established to describe essential steps in the care of patients with a specific clinical problem. They translate (inter)national guidelines into local applicable protocols and clinical practice. The purpose of this article is to establish a multidisciplinary integrated care pathway for specialists and allied health care professionals in caring for individuals with von Hippel-Lindau (VHL) disease. METHODS: Using a modified Delphi consensus-making process, a multidisciplinary panel from 5 Dutch University Medical Centers produced an integrated care pathway relating to the provision of care for patients with VHL by medical specialists, specialized nurses, and associated health care professionals. Patient representatives cocreated the pathway and contributed quality criteria from the patients' perspective. RESULTS: The panel agreed on recommendations for the optimal quality of care for individuals with a VHL gene mutation. These items were the starting point for the development of a patient care pathway. With international medical guidelines addressing the different VHL-related disorders, this article presents a patient care pathway as a flowchart that can be incorporated into VHL expertise clinics or nonacademic treatment clinics. CONCLUSIONS: Medical specialists (internists, urologists, neurosurgeons, ophthalmologists, geneticists, medical oncologists, neurologists, gastroenterologists, pediatricians, and ear-nose-throat specialists) together with specialized nurses play a vital role alongside health care professionals in providing care to people affected by VHL and their families. This article presents a set of consensus recommendations, supported by organ-specific guidelines, for the roles of these practitioners in order to provide optimal VHL care. This care pathway can form the basis for the development of comprehensive, integrated pathways for multiple neoplasia syndromes
    corecore