345,608 research outputs found

    Transport coefficients and cross sections for electrons in water vapour: comparison of cross section sets using an improved Boltzmann equation solution

    Get PDF
    This paper revisits the issues surrounding computation of electron transport properties in water vapour as a function of E/n0 (the ratio of the applied electric field to the water vapour number density) up to 1200 Td. We solve the Boltzmann equation using an improved version of the code of Ness and Robson [Phys. Rev. A 38, 1446 (1988)], facilitating the calculation of transport coefficients to a considerably higher degree of accuracy. This allows a correspondingly more discriminating test of the various electron–water vapour cross section sets proposed by a number of authors, which has become an important issue as such sets are now being applied to study electron driven processes in atmospheric phenomena [P. Thorn, L. Campbell, and M. Brunger, PMC Physics B 2, 1 (2009)] and in modeling charged particle tracks in matter [A. Munoz, F. Blanco, G. Garcia, P. A. Thorn, M. J. Brunger, J. P. Sullivan, and S. J. Buckman, Int. J. Mass Spectrom. 277, 175 (2008)]

    Boston University Wind Ensemble: David J. Martins, conductor, October 19, 1999

    Full text link
    This is the concert program of the Boston University Wind Ensemble performance on Tuesday, October 19, 1999 at 8:00 p.m., at the Tsai Performance Center, 685 Commonwealth Avenue. Works performed were Two Marches for the Sultan Abdul Medjid (arr. Townsend) by Gaetano Donizetti, Serenade No. 12 in C minor, K. 388 by Wolfgang Amadeus Mozart, Gavorkna Fanfare by Jack Stamp, A Movement for Rosa by Mark Camphouse, "Loch Ness:" A Scottish Fantasy by Johan de Meij. Digitization for Boston University Concert Programs was supported by the Boston University Humanities Library Endowed Fund

    Non-equilibrium steady state of sparse systems

    Full text link
    A resistor-network picture of transitions is appropriate for the study of energy absorption by weakly chaotic or weakly interacting driven systems. Such "sparse" systems reach a novel non-equilibrium steady state (NESS) once coupled to a bath. In the stochastic case there is an analogy to the physics of percolating glassy systems, and an extension of the fluctuation-dissipation phenomenology is proposed. In the mesoscopic case the quantum NESS might differ enormously from the stochastic NESS, with saturation temperature determined by the sparsity. A toy model where the sparsity of the system is modeled using a log-normal random ensemble is analyzed.Comment: 6 pages, 6 figures, EPL accepted versio

    Two Faculty Members Appointed as Distinguished Professors

    Get PDF
    Kenneth J. Sufka and Robert Van Ness honored for their teaching, research and servic

    Independent electrons model for open quantum systems: Landauer-Buettiker formula and strict positivity of the entropy production

    Full text link
    A general argument leading from the formula for currents through an open noninteracting mesoscopic system given by the theory of non-equilibrium steady states (NESS) to the Landauer-Buettiker formula is pointed out. Time reversal symmetry is not assumed. As a consequence it follows that, as far as the system has a nontrivial scattering theory and the reservoirs have different temperatures and/or chemical potentials, the entropy production is strictly positive.Comment: 12 pages. Submitted for publication in J. Math. Phys. on 2006-06-05. Revision and extension of: G. Nenciu, A general proof of Landauer-Buettiker formula, [math-ph/0603030

    Stripe fractionalization II: the quantum spin nematic and the Abrikosov lattice

    Get PDF
    In part (I) of this two paper series on stripe fractionalization, we argued that in principle the `domain wall-ness' of the stripe phase could persist in the spin and charge disordered superconductors, and we demonstrated how this physics is in one-to-one correspondence with Ising gauge theory. Here we focus on yet another type of order suggested by the gauge theory: the quantum spin nematic. Although it is not easy to measure this order directly, we argue that the superconducting vortices act as perturbations destroying the gauge symmetry locally. This turns out to give rise to a simple example of a gauge-theoretical phenomenon known as topological interaction. As a consequence, at any finite vortex density a globally ordered antiferromagnet emerges. This offers a potential explanation for recent observations in the underdoped 214 system
    • …
    corecore