4 research outputs found

    Nuclear data for astrophysics: resources, challenges, strategies, and software solutions

    No full text
    One of the most exciting utilizations of nuclear data is to help unlock the mysteries of the Cosmos - the creation of the chemical elements, the evolution and explosion of stars, and the origin and fate of the Universe. There are now many nuclear data sets, tools, and other resources online to help address these important questions. However, numerous serious challenges make it important to develop strategies now to ensure a sustainable future for this work. A number of strategies are advocated, including: enlisting additional manpower to evaluate the newest data; devising ways to streamline evaluation activities; and improving communication and coordination between existing efforts. Software projects are central to some of these strategies. Examples include: creating a virtual "pipeline" leading from the nuclear laboratory to astrophysics simulations; improving data visualization and management to get the most science out of the existing datasets; and creating a nuclear astrophysics data virtual (online) community. Recent examples will be detailed, including the development of two first-generation software pipelines, the Computational Infrastructure for Nuclear Astrophysics for stellar astrophysics and the bigbangonline suite of codes for cosmology, and the coupling of nuclear data to sensitivity studies with astrophysical simulation codes to guide future research

    Nuclear data for astrophysics: resources, challenges, strategies, and software solutions

    No full text
    One of the most exciting utilizations of nuclear data is to help unlock the mysteries of the Cosmos - the creation of the chemical elements, the evolution and explosion of stars, and the origin and fate of the Universe. There are now many nuclear data sets, tools, and other resources online to help address these important questions. However, numerous serious challenges make it important to develop strategies now to ensure a sustainable future for this work. A number of strategies are advocated, including: enlisting additional manpower to evaluate the newest data; devising ways to streamline evaluation activities; and improving communication and coordination between existing efforts. Software projects are central to some of these strategies. Examples include: creating a virtual "pipeline" leading from the nuclear laboratory to astrophysics simulations; improving data visualization and management to get the most science out of the existing datasets; and creating a nuclear astrophysics data virtual (online) community. Recent examples will be detailed, including the development of two first-generation software pipelines, the Computational Infrastructure for Nuclear Astrophysics for stellar astrophysics and the bigbangonline suite of codes for cosmology, and the coupling of nuclear data to sensitivity studies with astrophysical simulation codes to guide future research

    Unbound States of \u3csup\u3e32\u3c/sup\u3eCl relevant for Novae

    No full text
    The 31S(p,γ?)32Cl proton-capture reaction is expected to be the dominant breakout pathway of the SiP cycle, which is important for understanding nucleosynthesis in some novae [1]. At novae temperatures, the 31S(p,γ?)32Cl reaction rate is dominated by 31S+p resonances. Discrepancies in the 32Cl resonance energies were reported in previous measurements [1, 2]. We used the 32S(3He,t)32Cl charge-exchange reaction to produce unbound states in 32Cl and determine their excitation energies by detecting tritons at the focal plane of the Enge Spectrograph at the Yale University\u27s Wright Nuclear Structure Laboratory. Proton branching ratios were determined by detecting the decay protons coming from the residual 32Cl states using a silicon array in the spectrometer\u27s target chamber. The improved energy values of excited levels in 32Cl and measurements of the proton-branching ratios should significantly improve our understanding of the 31S(p,γ?)32Cl reaction rate. © Copyright owned by the author(s
    corecore