25 research outputs found

    The Single-Particle Structure of Neutron-Rich Nuclei of Astrophysical Interest at the Ornl Hribf

    Full text link
    The rapid nuetron-capture process (r process) produces roughly half of the elements heavier than iron. The path and abundances produced are uncertain, however, because of the lack of nuclear strucure information on important neutron-rich nuclei. We are studying nuclei on or near the r-process path via single-nucleon transfer reactions on neutron-rich radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF). Owing to the difficulties in studying these reactions in inverse kinematics, a variety of experimental approaches are being developed. We present the experimental methods and initial results.Comment: Proceedings of the Third International Conference on Fission and Properties of Neutron-Rich Nucle

    Reactions of a Be-10 beam on proton and deuteron targets

    Get PDF
    The extraction of detailed nuclear structure information from transfer reactions requires reliable, well-normalized data as well as optical potentials and a theoretical framework demonstrated to work well in the relevant mass and beam energy ranges. It is rare that the theoretical ingredients can be tested well for exotic nuclei owing to the paucity of data. The halo nucleus Be-11 has been examined through the 10Be(d,p) reaction in inverse kinematics at equivalent deuteron energies of 12,15,18, and 21.4 MeV. Elastic scattering of Be-10 on protons was used to select optical potentials for the analysis of the transfer data. Additionally, data from the elastic and inelastic scattering of Be-10 on deuterons was used to fit optical potentials at the four measured energies. Transfers to the two bound states and the first resonance in Be-11 were analyzed using the Finite Range ADiabatic Wave Approximation (FR-ADWA). Consistent values of the spectroscopic factor of both the ground and first excited states were extracted from the four measurements, with average values of 0.71(5) and 0.62(4) respectively. The calculations for transfer to the first resonance were found to be sensitive to the size of the energy bin used and therefore could not be used to extract a spectroscopic factor.Comment: 16 Pages, 10 figure

    Direct reaction measurements with a 132Sn radioactive ion beam

    Full text link
    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the cross section. The magnitude of the nuclear effects was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N=82 shell closure. The data were analyzed using finite range adiabatic wave calculations and the results compared with the previous analysis using the distorted wave Born approximation. Angular distributions for the ground and first excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one neutron states beyond the benchmark doubly-magic nucleus 208Pb.Comment: 22 pages, 7 figure

    19Ne levels studied with the 18F(d,n)19Ne\u3csup\u3e*\u3c/sup\u3e(18F+p) reaction

    Get PDF
    A good understanding of the level structure of 19Ne around the proton threshold is critical to estimating the destruction of long-lived 18F in novae. Here we report the properties of levels in 19Ne in the excitation energy range of 6.9 ≤ Ex ≤ 8.4 MeV studied via the proton-transfer 18F(d,n)Ne* reaction at the Holifield Radioactive Ion Beam Facility. The populated 19Ne levels decay by breakup into p+18F and α+15O particles. The results presented in this manuscript are those of levels that are simultaneously observed from the breakup into both channels. An s-wave state is observed at 1468 keV above the proton threshold, which is a potential candidate for a predicted broad Jπ = 1/2+ state. The proton and α partial widths are deduced to be Γp = 228 ± 50 keV and Γα = 130 ± 30 keV for this state. © 2012 American Physical Society

    The magic nature of 132Sn explored through the single-particle states of 133Sn

    Full text link
    Atomic nuclei have a shell structure where nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lie outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.Comment: 19 pages, 5 figures and 4 table

    First proton-transfer study of 18F+p resonances relevant for novae

    Get PDF
    The 18F(p,α)15O reaction is the predominant destruction mechanism in novae of the radionuclide F18, a target of γ-ray observatories. Thus, its rate is important for understanding F18 production in novae. We have studied resonances in the 18F+p system by making a measurement of a proton-transfer reaction 18F(d,n). We have observed 15 Ne19 levels, 5 of which are below the proton threshold, including a subthreshold state, which has significant l p=0 strength. Our data provide a direct determination of the spectroscopic strength of these states and new constraints on their spins and parities, thereby resolving a controversy, which involves the 8- and 38-keV resonances. The 18F(p,α)15O reaction rate is reevaluated, which takes the subthreshold resonance and other new information determined in this experiment into account. © 2011 American Physical Society

    Single-nucleon transfer reactions on \u3csup\u3e18\u3c/sup\u3eF

    Get PDF
    Simultaneous measurement of the proton-transfer 18F(d,n) 19Ne and neutron-transfer 18F(d,p)19F reactions were performed with a 18F radioactive beam at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The experiments clarify the nuclear structure of 19Ne near the proton threshold, which is relevant for understanding the rates of proton-induced reactions on 18F in novae. Analogs for several states in the mirror nucleus 19F have not yet been identified in 19Ne, indicating that the level structure of 19Ne in this region is incomplete. We observed 15 levels in 19Ne from the 18F(d,n) 19Ne measurement and 18 levels in 19F from the 18F(d,p)19F measurement. Angular distributions were extracted for all strongly populated states and compared to distorted-wave Born approximation calculations. The angular distributions for all the known states in the two nuclei determined in this work are consistent with their previously assigned spins and parities. The spectroscopic factors determined for these levels in the two nuclei are reported. © 2011 American Physical Society

    New Constraints on the 18F(p,alpha) 15O Rate in Novae from the (d,p) Reaction

    Get PDF
    The degree to which the (p,gamma) and (p,alpha) reactions destroy 18F at temperatures 1-4x10^8 K is important for understanding the synthesis of nuclei in nova explosions and for using the long-lived radionuclide 18F, a target of gamma-ray astronomy, as a diagnostic of nova mechanisms. The reactions are dominated by low-lying proton resonances near the 18F+p threshold (E_x=6.411 MeV in 19Ne). To gain further information about these resonances, we have used a radioactive 18F beam from the Holifield Radioactive Ion Beam Facility to selectively populate corresponding mirror states in 19F via the inverse d(18F,p)19F neutron transfer reaction. Neutron spectroscopic factors were measured for states in 19F in the excitation energy range 0-9 MeV. Widths for corresponding proton resonances in 19Ne were calculated using a Woods-Saxon potential. The results imply significantly lower 18F(p,gamma)19Ne and 18F(p,alpha)15O reaction rates than reported previously, thereby increasing the prospect of observing the 511-keV annihilation radiation associated with the decay of 18F in the ashes ejected from novae.Comment: Error involving sum rule was corrected. Proton widths were recalculated using a Woods-Saxon potential. Both low-lying resonances (8- and 38-keV) are now included in the rate band. 12 pages, 4 figures, 1 table. Submitted to Phys. Rev.

    Decays of the Three Top Contributors to the Reactor ν - e High-Energy Spectrum, Rb 92, y 96gs, and Cs 142, Studied with Total Absorption Spectroscopy

    Get PDF
    We report total absorption spectroscopy measurements of Rb92, Y96gs, and Cs142 β decays, which are the most important contributors to the high energy ν-e spectral shape in nuclear reactors. These three β decays contribute 43% of the ν-e flux near 5.5 MeV emitted by nuclear reactors. This ν-e energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of U238 with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a β-decay pattern that is similar to recent measurements of Rb92, with a ground-state to ground-state β feeding of 91(3)%. We verify the Y96gs ground-state to ground-state β feeding of 95.5(20)%. Our measurements substantially modify the β-decay feedings of Cs142, reducing the β feeding to Ba142 states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν-e flux between 5 and 7 MeV, the maximum excess increases from ∼10% to ∼12%
    corecore