25 research outputs found

    Implementación de técnicas de secuenciación masiva para el desarrollo de nuevos algoritmos diagnósticos y bioinformáticos en distrófias hereditarias de retina

    Get PDF
    Las distrofias hereditarias de retina (DHR) son un conjunto de enfermedades degenerativas y, generalmente, progresivas que se caracterizan por la afectación primaria de los fotorreceptores (bastones y conos). Se estima que este grupo de enfermedades afecta, aproximadamente, a 1 de cada 3000 personas (Wright, y cols., 2010) por lo que están englobadas dentro de las denominadas enfermedades raras. Actualmente, las DHR no tienen un tratamiento paliativo ni curativo, y conducen a la pérdida parcial o total de la visión (Rivolta, y cols., 2002). Las DHR se pueden clasificar en base a si afectan predominantemente a los bastones (ej: Retinosis pigmentaria, RP; Coroideremia, CHM; o ceguera nocturna congénita estacionaria, CNCE), a los conos (ej: Distrofia de conos, DC; distrofia de conos y bastones, DCB; alteración en la visión de los colores o acromatopsia, AVC/ACHM; distrofia macular, DM; Retinosquisis, RS; o enfermedad de Stargardt, STGD) o causan la afectación generalizada de ambos tipos de fotorreceptores (ej: Amaurosis congénita de Leber, ACL) (Berger, y cols., 2010; Hamel, 2006). Además, aunque en la mayoría de los casos las DHR se manifiestan con síntomas confinados al ojo, en un 20‐30% de los casos estas enfermedades se encuentran asociadas a otras alteraciones sistémicas (casos sindrómicos). Entre los síndromes más comunes asociados a DHR se encuentran el síndrome de Usher (USH) y el síndrome de Bardet‐Biedl (SBB). Aunque todas estas enfermedades son consideradas entidades clínicas distintas, hay que tener en cuenta que no siempre es fácil distinguirlas ya que presentan una alta heterogeneidad clínica y genética (Estrada‐Cuzcano, y cols., 2012; Neveling, y cols., 2013), lo que complica enormemente su diagnóstico. Las nuevas tecnologías de secuenciación, conocidas como secuenciación masiva o de nueva generación (NGS), han revolucionado el campo de la genética y la genómica, ofreciendo soluciones al abordaje de enfermedades heterogéneas como las DHR, ya que permiten el análisis simultáneo de todos los genes de interés. Actualmente, existen múltiples plataformas diferentes de NGS de distintas compañías comerciales, que difieren en su capacidad, longitud de lecturas, tiempo de protocolo, precio y en el tipo de reacciones químicas que llevan a cabo (Goodwin, y cols., 2016; Liu, y cols., 2012). Entre ellas podemos encontrar: Roche 454 (GS FLX Titanium y GS Junior), Life Technologies (ej: SOLiD 5500xl, Ion Torrent PGM) e Illumina (ej: HiSeq, MiSeq, NextSeq). El objetivo de la presente tesis doctoral es diseñar, validar e implementar una aproximación para el diagnóstico de las DHR basada en paneles de genes específicos de nuestra población y un sistema personalizado de los datos generados por NGS. Con esta estrategia se pretende conseguir una tasa diagnóstica elevada que sea similar o superior a la resultante de estudios que incluyen un mayor número de genes, para poder comprobar así su costo‐eficiencia. Además, permitirían determinar el número de casos que necesitan que su diagnóstico sea rectificado debido al solapamiento clínico de las distintas patologías, así como esclarecer el efecto de mutaciones de dudosa patogenicidad. Por otro lado, estos paneles permiten seleccionar los casos candidatos a portar mutaciones en genes no previamente asociados con las DHR, que posteriormente serán analizados por secuenciación del exoma completo (WES) para la identificación de los mismos. En el presente trabajo se han secuenciado por NGS un total de 159 pacientes afectos de DHRs, de los cuales 20 tenían un diagnóstico molecular previo y fueron utilizados como controles positivos para evaluar la fiabilidad de las estrategias llevadas a cabo. Todas las variantes patogénicas presentes en estas muestras utilizadas para la validación del sistema fueron identificadas tras el análisis de los datos, obteniendo así una tasa de detección de mutaciones del 100%. De las 139 familias restantes que no contaban con un diagnóstico genético con anterioridad a este estudio, se consiguió diagnosticar a 94 de ellas, dando una tasa diagnóstica del 67,62%. Este porcentaje es similar e incluso superior al obtenido en otros estudios donde el número de genes analizado era más elevado (Wang, y cols., 2013), confirmando así la eficiencia de los paneles de genes específicos de población. Además, los datos generados por NGS llevaron a la rectificación del diagnóstico clínico de 26 de las 94 familias resueltas (27.66%), lo que se explica por el solapamiento fenotípico de este grupo de enfermedades. Es importante tener en cuenta que la mayoría de estos casos reclasificados no hubieran sido diagnosticados mediante aproximaciones dependientes del diagnóstico clínico previo, como pueden ser los paneles de genes diseñados para un único fenotipo. De ser así, la tasa diagnóstica en este estudio hubiera sido significativamente inferior pasando de un 67,62% a menos de un 50%. Por este motivo, esta visión podría considerarse obsoleta y se demuestra que el abordaje más eficiente para enfermedades heterogéneas es el uso de estrategias libres de hipótesis prefijadas. Del mismo modo, contar con este tipo de estrategias puede facilitar la identificación de nuevas correlaciones genotipo‐fenotipo y ampliar el espectro fenotípico de genes ya asociados con la enfermedad. Los diversos estudios presentados en este trabajo han permitido determinar la prevalencia de los genes mutados en nuestra población. Se detectaron mutaciones patogénicas en 37 de los genes analizados, siendo el gen USH2A el más frecuentemente mutado en nuestra población y la principal causa de RPAR, seguido de los genes CRB1, EYS y RP1. Por otro lado, los genes RHO y PRPF31 fueron los más prevalentes en RPAD y, del mismo modo, RPGR fue la causa más frecuente de RPLX. Respecto a otras DHR, el gen CEP290 fue el que mostró una mayor prevalencia en ACL, ABCA4 fue considerado causal en la mayoría de los casos con STGD, BBS1 fue el más frecuente en el SBB y los genes USH2A, MYO7A y CDH3 fueron los más mutados en el síndrome de Usher (Millan, y cols., 2011). Además, los resultados aquí presentados hanpermitido identificar un total de 51 mutaciones nuevas nunca antes asociadas a enfermedad y han llevado a cuestionar la patogenicidad de dos variantes previamente consideradas como patogénicas (p.Cys759Phe de USH2A y c.206G>A de CA4). A pesar de que la secuenciación de paneles de genes ha resultado ser una buena herramienta para fines diagnósticos, el estudio de los casos que no han sido resueltos por esta aproximación requiere de otras estrategias que impliquen a un mayor número de regiones génicas. Por este motivo, se llevó a cabo la WES de una familia previamente analizada, sin resultados positivos, por nuestro panel. Esta secuenciación permitió identificar dos variantes que cosegregaban con la enfermedad (RPAR) en un gen no asociado previamente a DHR. Este resultado nos llevó a incluir este gen en la siguiente actualización de nuestro panel, lo que hizo que pudiéramos encontrar una segunda familia no relacionada con mutaciones en el mismo gen. Estos resultados, unidos a diversos estudios funcionales realizados tanto en la presente tesis doctoral como por otros autores, nos llevó a considerar este gen como un nuevo candidato de RPAR en humanos y, por tanto, considerar resueltas estas dos familias. Por tanto, tener un control total de las regiones diana de nuestro panel de genes nos ha permitido conocer las ventajas y limitaciones de nuestro diseño, así como hallar por nosotros mismos la solución a los problemas que nos hemos ido encontrando en la práctica y postular posibles mejoras para nuestro sistema. Además, al tratarse de un diseño personalizado hemos tenido la oportunidad de ir realizando diversas actualizaciones, basadas en los resultados obtenidos, que han ido mejorando progresivamente nuestro diseño. Del mismo modo, desarrollar un algoritmo bioinformático ajustado a las características y necesidades de nuestro proyecto nos ha permitido disponer de un sistema de análisis productivo que proporciona un control absoluto sobre la naturaleza de los datos generados por NGS y, por tanto, de la calidad del proceso, lo que es sumamente prioritario para la práctica clínica por razones médico‐legales (Gullapalli, y cols., 2012a; Gullapalli, y cols., 2012b). La decisión de utilizar un sistema de análisis personalizado, basado en la combinación de paquetes de programas disponibles públicamente, en lugar de un sistema de análisis comercial, ha tenido un efecto favorable sobre la efectividad del proceso y nos ha facilitado la interpretación de los datos

    Unravelling the genetic basis of simplex Retinitis Pigmentosa cases

    Get PDF
    Retinitis Pigmentosa (RP) is the most common form of inherited retinal dystrophy (IRD) characterized ultimately by photoreceptors degeneration. Exhibiting great clinical and genetic heterogeneity, RP can be inherited as an autosomal dominant (ad), autosomal recessive (ar) and X-linked (xl) disorder. Although the relative prevalence of each form varies somewhat between populations, a major proportion (41% in Spain) of patients represent simplex cases (sRP) in which the mode of inheritance is unknown. Molecular genetic diagnostic is crucial, but also challenging, for sRP patients because any of the 81 RP genes identified to date may be causative. Herein, we report the use of a customized targeted gene panel consisting of 68 IRD genes for the molecular characterization of 106 sRP cases. The diagnostic rate was 62.26% (66 of 106) with a proportion of clinical refinements of 30.3%, demonstrating the high efficiency of this genomic approach even for clinically ambiguous cases. The high number of patients diagnosed here has allowed us to study in detail the genetic basis of the sRP. The solved sRP cohort is composed of 62.1% of arRP cases, 24.2% of adRP and 13.6% of xlRP, which implies consequences for counselling of patients and families.Union Europea PI15-01648España Ministerio de Economía y Competitividad PI11-02923Junta de Andalucía,Ministerio de Economía, Innovación, Ciencia y Empleo CTS-166

    Deciphering intrafamilial phenotypic variability by exome sequencing in a Bardet–Biedl family

    Get PDF
    Bardet–Biedl syndrome (BBS) is a model ciliopathy characterized by a wide range of clinical variability. The heterogeneity of this condition is reflected in the number of underlying gene defects and the epistatic interactions between the proteins encoded. BBS is generally inherited in an autosomal recessive trait. However, in some families, mutations across different loci interact to modulate the expressivity of the phenotype. In order to investigate the magnitude of epistasis in one BBS family with remarkable intrafamilial phenotypic variability, we designed an exome sequencing–based approach using SOLID 5500xl platform. This strategy allowed the reliable detection of the primary causal mutations in our family consisting of two novel compound heterozygous mutations in McKusick–Kaufman syndrome (MKKS) gene (p.D90G and p.V396F). Additionally, exome sequencing enabled the detection of one novel heterozygous NPHP4 variant which is predicted to activate a cryptic acceptor splice site and is only present in the most severely affected patient. Here, we provide an exome sequencing analysis of a BBS family and show the potential utility of this tool, in combination with network analysis, to detect disease-causing mutations and second-site modifiers. Our data demonstrate how next-generation sequencing (NGS) can facilitate the dissection of epistatic phenomena, and shed light on the genetic basis of phenotypic variability

    Perfil genético asociado a pacientes con síndrome aórtico agudo complicado: el estudio GEN-AOR

    Get PDF
    [EN] Introduction and objectives: Genetic testing is becoming increasingly important for diagnosis and personalized treatments in aortopathies. Here, we aimed to genetically diagnose a group of acute aortic syndrome (AAS) patients consecutively admitted to an intensive care unit and to explore the clinical usefulness of AAS-associated variants during treatment decision-making and family traceability. Methods: We applied targeted next-generation sequencing, covering 42 aortic diseases genes in AAS patients with no signs consistent with syndromic conditions. Detected variants were segregated by Sanger sequencing in available family members. Demographic features, risk factors and clinical symptoms were statistically analyzed by Fisher or Fisher-Freeman-Halton Exact tests, to assess their relationship with genetic results. Results: Analysis of next-generation sequencing data in 73 AAS patients led to the detection of 34 heterozygous candidate variants in 14 different genes in 32 patients. Family screening was performed in 31 relatives belonging to 9 families. We found 13 relatives harboring the family variant, of which 10 showed a genotype compatible with the occurrence of AAS. Statistical tests revealed that the factors associated with a positive genetic diagnosis were the absence of hypertension, lower age, family history of AAS and absence of pain. Conclusions: Our findings broaden the spectrum of the genetic background for AAS. In addition, both index patients and studied relatives benefited from the results obtained, establishing the most appropriate level of surveillance for each group. Finally, this strategy could be reinforced by the use of stastistically significant clinical features as a predictive tool for the hereditary character of AAS. ClinicalTrials.gov (Identifier: NCT04751058)[ES] Introducción y objetivos: El papel de la genética en el diagnóstico y la personalización de los tratamientos de las aortopatías, es cada vez mayor. En este estudio se analizó la prevalencia de variantes genéticas en pacientes con síndrome aórtico agudo (SAA) admitidos consecutivamente en una unidad de cuidados intensivos y se evaluó su utilidad clínica. Métodos: Mediante secuenciación masiva, se analizó 42 genes asociados a aortopatías en pacientes con SAA no sindrómico. Las variantes identificadas se segregaron mediante secuenciación Sanger en los familiares disponibles. Además, se estudió la relación entre los resultados genéticos y algunas características clínicas mediante la aplicación de los test exactos de Fisher y de Fisher-Freeman-Halton. Resultados: El análisis de los datos genómicos de 73 pacientes de SAA dio como resultado la identificación de 34 variantes candidatas en 32 individuos, localizadas en 14 genes diferentes. La segregación familiar se realizó en 31 individuos pertenecientes a 9 familias, donde se encontraron 13 portadores de los que 10 mostraron un genotipo compatible con SAA. El estudio estadístico indicó que la ausencia de hipertensión, una menor edad, una historia familiar de SAA y la ausencia de dolor están asociadas con un estudio genético positivo. Conclusiones: Se amplió el espectro mutacional asociado a SAA. Además, tanto los pacientes índice como los familiares estudiados se han visto beneficiados por estos resultados, por lo que se puede establecer el protocolo de seguimiento adecuado para cada uno de ellos. Por último, es importante destacar la posibilidad de utilizar variables clínicas estadísticamente significativas como factores predictores del carácter hereditario del SAA. ClinicalTrials.gov (Identifier: NCT04751058)Este trabajo contó con el apoyo del Instituto de Salud Carlos III (ISCIII), Ministerio de Economía y Competitividad de España y fue cofinanciado por la Unión Europea (FEDER, «Una manera de hacer Europa ») [PI18-00612; PI19/01550; PI21-00244; IMP/00009], Consejería Regional de Salud y Familias del Gobierno Autónomo de Andalucía [PEER-0501-2019; PEER-0470-2019], Consejería Regional de Transformación Económica, Industria, Conocimiento y Universidades de Andalucía [P20_00887] y la Fundación Isabel.Peer reviewe

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    CIBERER: Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    13 páginas,1 figura, 3 tablas, 1 apéndice. Se extraen los autores pertenecientes a The CIBERER network que trabajan en Centros del CSIC del Appendix ACIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research.This study has been funded by Instituto de Salud Carlos III (ISCIII) and Spanish Ministry of Science and InnovationPeer reviewe

    Expanding the clinical and mutational spectrum of germline ABL1 mutations-associated syndrome. A case report

    Get PDF
    [Rationale] Clinical and genetic management of patients with rare syndromes is often a difficult, confusing, and slow task.[Patient concerns] Male child patient with a multisystemic disease showing congenital heart defects, facial dysmorphism, skeletal malformations, and eye anomalies.[Diagnosis] The patient remained clinically undiagnosed until the genetic results were conclusive and allowed to associate its clinical features with the germline ABL1 mutations-associated syndrome.[Interventions] We performed whole-exome sequencing to uncover the underlying genetic defect in this patient. Subsequently, family segregation of identified mutations was performed by Sanger sequencing in all available family members.[Outcomes] The only detected variant compatible with the disease was a novel heterozygous nonframeshift de novo deletion in ABL1 (c.434_436del; p.Ser145del). The affected residue lays in a functional domain of the protein, it is highly conserved among distinct species, and its loss is predicted as pathogenic by in silico studies.[Lessons] Our results reinforce the involvement of ABL1 in clinically undiagnosed cases with developmental defects and expand the clinical and genetic spectrum of the recently reported ABL1-associated syndrome. In this sense, we described the third germline ABL1 causative mutation and linked, for the first time, ocular anterior chamber anomalies to this pathology. Thus, we suggest that this disorder may be more heterogeneous than is currently believed and may be overlapping with other multisystemic diseases, hence genetic and clinical reassessment of this type of cases should be considered to ensure proper diagnosis.This work was supported by Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness, and co-funded by European Union (ERDF/ESF, “Investing in your future”) [PI15-01648 and PI16-01422], CIBERER ACCI [ER16P1AC702/2017] and Regional Ministry of Economy, Innovation, Science and Employment of the Autonomous Government of Andalusia [CTS-1664]. The CIBERER is an initiative of the ISCIII, Spanish Ministry of Economy and Competitiveness.Peer reviewe

    Novel RP1 mutations and a recurrent BBS1 variant explain the co-existence of two distinct retinal phenotypes in the same pedigree

    Get PDF
    Background: Molecular diagnosis of Inherited Retinal Dystrophies (IRD) has long been challenging due to the extensive clinical and genetic heterogeneity present in this group of disorders. Here, we describe the clinical application of an integrated next-generation sequencing approach to determine the underlying genetic defects in a Spanish family with a provisional clinical diagnosis of autosomal recessive Retinitis Pigmentosa (arRP). Results: Exome sequencing of the index patient resulted in the identification of the homozygous BBS1 p.M390R mutation. Sanger sequencing of additional members of the family showed lack of co-segregation of the p.M390R variant in some individuals. Clinical reanalysis indicated co-ocurrence of two different phenotypes in the same family: Bardet-Biedl syndrome in the individual harboring the BBS1 mutation and non-syndromic arRP in extended family members. To identify possible causative mutations underlying arRP, we conducted disease-targeted gene sequencing using a panel of 26 IRD genes. The in-house custom panel was validated using 18 DNA samples known to harbor mutations in relevant genes. All variants were redetected, indicating a high mutation detection rate. This approach allowed the identification of two novel heterozygous null mutations in RP1 (c.4582_4585delATCA; p.I1528Vfs*10 and c.5962dupA; p.I1988Nfs*3) which co-segregated with the disease in arRP patients. Additionally, a mutational screening in 96 patients of our cohort with genetically unresolved IRD revealed the presence of the c.5962dupA mutation in one unrelated family. Conclusions: The combination of molecular findings for RP1 and BBS1 genes through exome and gene panel sequencing enabled us to explain the co-existence of two different retinal phenotypes in a family. The identification of two novel variants in RP1 suggests that the use of panels containing the prevalent genes of a particular population, together with an optimized data analysis pipeline, is an efficient and cost-effective approach that can be reliably implemented into the routine diagnostic process of diverse inherited retinal disorders. Moreover, the identification of these novel variants in two unrelated families supports the relatively high prevalence of RP1 mutations in Spanish population and the role of private mutations for commonly mutated genes, while extending the mutational spectrum of RP1Instituto de Salud Carlos III (ISCIII)Spanish Ministry of Economy and Competitiveness, Spain (PI1102923, CIBERER ACCI and CDTI FEDER-Innterconecta EXP00052887/ITC-20111037)Foundation Ramón Areces (CIVP16A1856)ISCIII fellowship FI12/0054

    Deciphering intrafamilial phenotypic variability by exome sequencing in a Bardet–Biedl family

    No full text
    Bardet–Biedl syndrome (BBS) is a model ciliopathy characterized by a wide range of clinical variability. The heterogeneity of this condition is reflected in the number of underlying gene defects and the epistatic interactions between the proteins encoded. BBS is generally inherited in an autosomal recessive trait. However, in some families, mutations across different loci interact to modulate the expressivity of the phenotype. In order to investigate the magnitude of epistasis in one BBS family with remarkable intrafamilial phenotypic variability, we designed an exome sequencing–based approach using SOLID 5500xl platform. This strategy allowed the reliable detection of the primary causal mutations in our family consisting of two novel compound heterozygous mutations in McKusick–Kaufman syndrome (MKKS) gene (p.D90G and p.V396F). Additionally, exome sequencing enabled the detection of one novel heterozygous NPHP4 variant which is predicted to activate a cryptic acceptor splice site and is only present in the most severely affected patient. Here, we provide an exome sequencing analysis of a BBS family and show the potential utility of this tool, in combination with network analysis, to detect disease-causing mutations and second-site modifiers. Our data demonstrate how next-generation sequencing (NGS) can facilitate the dissection of epistatic phenomena, and shed light on the genetic basis of phenotypic variabilityInstituto de Salud Carlos III (ISCIII)Spanish Ministry of Economy and Competitiveness (PI1102923)Regional Ministry of Economy, Innovation, Science and Employment of the Autonomous Government of Andalusia (CTS-03687)Regional Ministry of Health of the Autonomous Government of Andalusia (PI100154), (PCT-30000-2009-12)INNPLANTA (PCT-300000-2010-007)Ciber de Enfermedades raras (CIBERER)Foundation Ramon Areces (CIVP16A1856)Spanish Ministry of Science and Innovation (BIO2011-27069)Conselleria de Educacio of the Valencia Community (PROMETEO/2010/001

    Delving into the Role of lncRNAs in Papillary Thyroid Cancer: Upregulation of LINC00887 Promotes Cell Proliferation, Growth and Invasion

    No full text
    Papillary thyroid carcinoma (PTC) is the most common histological category of thyroid cancer. In recent years, there has been an increasing number of studies on lncRNAs in PTC. Long intergenic non-protein coding RNA 887 (LINC00887) is a critical oncogene in developing other cancers. LINC00887 is upregulated in PTC samples but its role in PTC is currently unclear. This study aimed to investigate the impact the disruption of LINC00887 expression has on PTC progression. We performed a CRISPR/Cas9 strategy for the truncation of LINC00887 in BCPAP and TPC1 cell lines. Functional assays showed that LINC00887 knockdown in both TPC1 and BCPAP cells reduced cell proliferation, colony formation and migration, delayed the cell cycle, and increased apoptosis. These results strengthened the role of LINC00887 in cancer and showed for the first time that this lncRNA could be a potential oncogene in PTC, acting as a tumor promoter. Modulation of the immune system may be one of the etiopathogenic mechanisms of LINC00887 in PTC, as shown by the observed influence of this lncRNA on PD-L1 expression. In addition, the biological pathways of LINC00887 identified to date, such as EMT, the Wnt/β-catenin signaling pathway or the FRMD6-Hippo signaling pathway may also be relevant regulatory mechanisms operating in PTC.This research was funded by the Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness, Spain and co-funded by the European Union (ERDF, “A Way to Make Europe”) (PI19-01550, PI22-01428), the strategic plan for the Precision Medicine Infrastructure associated with Science and Technology—IMPaCT (IMP-0009) and Regional Ministry of Health and Families of the Autonomous Government of Andalusia (PEER-0470-2019), co-funded by the European Union. C.M.-R. is supported by fellowship FI20/00192 from ISCIII (ESF. “Investing in Your future”).Peer reviewe
    corecore