215 research outputs found

    Epigenetic Crosstalk between the Tumor Microenvironment and Ovarian Cancer Cells: A Therapeutic Road Less Traveled

    Get PDF
    Metastatic dissemination of epithelial ovarian cancer (EOC) predominantly occurs through direct cell shedding from the primary tumor into the intra-abdominal cavity that is filled with malignant ascitic effusions. Facilitated by the fluid flow, cells distribute throughout the cavity, broadly seed and invade through peritoneal lining, and resume secondary tumor growth in abdominal and pelvic organs. At all steps of this unique metastatic process, cancer cells exist within a multidimensional tumor microenvironment consisting of intraperitoneally residing cancer-reprogramed fibroblasts, adipose, immune, mesenchymal stem, mesothelial, and vascular cells that exert miscellaneous bioactive molecules into malignant ascites and contribute to EOC progression and metastasis via distinct molecular mechanisms and epigenetic dysregulation. This review outlines basic epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulators, and summarizes current knowledge on reciprocal interactions between each participant of the EOC cellular milieu and tumor cells in the context of aberrant epigenetic crosstalk. Promising research directions and potential therapeutic strategies that may encompass epigenetic tailoring as a component of complex EOC treatment are discussed

    Turning Up the Heat on the Pancreatic Tumor Microenvironment by Epigenetic Priming

    Get PDF
    The study by Gonda and colleagues, in this issue of Cancer Research, represents the first combinatorial approach based on epigenetic therapy priming to overcome resistance to immunotherapy in pancreatic cancer. The authors show that treatment with a DNA hypomethylating agent causes profound changes in the pancreatic cancer microenvironment, including increased numbers of tumor-infiltrating T cells, elevated IFN signaling, and immune checkpoint expression, as well as increased antigen presentation in tumor cells. Accordingly, they show that the combination of decitabine plus immune checkpoint blockade effectively restores antitumor immunity and results in a significant survival benefit in a widely accepted mouse model of pancreatic cancer. The study provides evidence for a new therapeutic approach for pancreatic cancer having antitumor efficacy through modulation of the immune suppressive microenvironment, leading to an increased response to immune checkpoint inhibitors. As the incidence of pancreatic cancer continues to increase, new treatment strategies for this devastating disease are urgently needed. Gonda and colleagues provide preclinical proof of concept for a new therapeutic strategy and address an unmet need for this difficult to treat disease

    Targeting Aldehyde Dehydrogenases to Eliminate Cancer Stem Cells in Gynecologic Malignancies

    Get PDF
    Gynecologic cancers cause over 600,000 deaths annually in women worldwide. The development of chemoresistance after initial rounds of chemotherapy contributes to tumor relapse and death due to gynecologic malignancies. In this regard, cancer stem cells (CSCs), a subpopulation of stem cells with the ability to undergo self-renewal and clonal evolution, play a key role in tumor progression and drug resistance. Aldehyde dehydrogenases (ALDH) are a group of enzymes shown to be robust CSC markers in gynecologic and other malignancies. These enzymes also play functional roles in CSCs, including detoxification of aldehydes, scavenging of reactive oxygen species (ROS), and retinoic acid (RA) signaling, making ALDH an attractive therapeutic target in various clinical scenarios. In this review, we discuss the critical roles of the ALDH in driving stemness in different gynecologic malignancies. We review inhibitors of ALDH, both general and isoform-specific, which have been used to target CSCs in gynecologic cancers. Many of these inhibitors have been shown to be effective in preclinical models of gynecologic malignancies, supporting further development in the clinic. Furthermore, ALDH inhibitors, including 673A and CM037, synergize with chemotherapy to reduce tumor growth. Thus, ALDH-targeted therapies hold promise for improving patient outcomes in gynecologic malignancies

    BioVLAB-MMIA-NGS: MicroRNA-mRNA Integrated Analysis using High Throughput Sequencing Data

    Get PDF
    Motivation: It is now well established that microRNAs (miRNAs) play a critical role in regulating gene expression in a sequence-specific manner, and genome-wide efforts are underway to predict known and novel miRNA targets. However, the integrated miRNA–mRNA analysis remains a major computational challenge, requiring powerful informatics systems and bioinformatics expertise. Results: The objective of this study was to modify our widely recognized Web server for the integrated mRNA–miRNA analysis (MMIA) and its subsequent deployment on the Amazon cloud (BioVLAB-MMIA) to be compatible with high-throughput platforms, including next-generation sequencing (NGS) data (e.g. RNA-seq). We developed a new version called the BioVLAB-MMIA-NGS, deployed on both Amazon cloud and on a high-performance publicly available server called MAHA. By using NGS data and integrating various bioinformatics tools and databases, BioVLAB-MMIA-NGS offers several advantages. First, sequencing data is more accurate than array-based methods for determining miRNA expression levels. Second, potential novel miRNAs can be detected by using various computational methods for characterizing miRNAs. Third, because miRNA-mediated gene regulation is due to hybridization of an miRNA to its target mRNA, sequencing data can be used to identify many-to-many relationship between miRNAs and target genes with high accuracy

    Epigenetic Attire in Ovarian Cancer: The Emperor’s New Clothes

    Get PDF
    Ovarian cancer is an aggressive epithelial tumor that remains a major cause of cancer morbidity and mortality in women. Epigenetic alterations including DNA methylation and histone modifications are being characterized in ovarian cancer and have been functionally linked to processes involved in tumor initiation, chemotherapy resistance, cancer stem cell survival, and tumor metastasis. The epigenetic traits of cancer cells and of associated tumor microenvironment components have been shown to promote an immunosuppressive tumor milieu. However, DNA methylation and histone modifications are reversible, and therapies targeting the epigenome have been implicated in potential reinvigoration of the antitumor immunity. In this review, we provide an overview specifically of DNA methylation and histone modifications as "clothes of the ovarian cancer genome" in relationship to their functional effects and highlight recent developments in the field. We also address the clinical implications of therapeutic strategies to remove or alter specific articles of genomic "clothing" and restore normal cellular function. As the clothes of the genome continue to be deciphered, we envision that the epigenome will become an important therapeutic target for cancer

    The Tumor Microenvironment of High Grade Serous Ovarian Cancer

    Get PDF
    The Special Issue on high grade serous ovarian cancer (HGSOC) and the contribution of the tumor micro-environment (TME) consisted of reviews contributed by leaders in the ovarian cancer (OC) field. [...]

    Carboplatin with Decitabine Therapy, in Recurrent Platinum Resistant Ovarian Cancer, Alters Circulating miRNAs Concentrations: A Pilot Study

    Get PDF
    OBJECTIVE: Plasma miRNAs represent potential minimally invasive biomarkers to monitor and predict outcomes from chemotherapy. The primary goal of the current study-consisting of patients with recurrent, platinum-resistant ovarian cancer-was to identify the changes in circulating miRNA concentrations associated with decitabine followed by carboplatin chemotherapy treatment. A secondary goal was to associate clinical response with changes in circulating miRNA concentration. METHODS: We measured miRNA concentrations in plasma samples from 14 patients with platinum-resistant, recurrent ovarian cancer enrolled in a phase II clinical trial that were treated with a low dose of the hypomethylating agent (HMA) decitabine for 5 days followed by carboplatin on day 8. The primary endpoint was to determine chemotherapy-associated changes in plasma miRNA concentrations. The secondary endpoint was to correlate miRNA changes with clinical response as measured by progression free survival (PFS). RESULTS: Seventy-eight miRNA plasma concentrations were measured at baseline (before treatment) and at the end of the first cycle of treatment (day 29). Of these, 10 miRNAs (miR-193a-5p, miR-375, miR-339-3p, miR-340-5p, miR-532-3p, miR-133a-3p, miR-25-3p, miR-10a-5p, miR-616-5p, and miR-148b-5p) displayed fold changes in concentration ranging from -2.9 to 4 (p<0.05), in recurrent platinum resistant ovarian cancer patients, that were associated with response to decitabine followed by carboplatin chemotherapy. Furthermore, lower concentrations of miR-148b-5p after this chemotherapy regimen were associated (P<0.05) with the PFS. CONCLUSIONS: This is the first report demonstrating altered circulating miRNA concentrations following a combination platinum plus HMA chemotherapy regiment. In addition, circulating miR-148b-5p concentrations were associated with PFS and may represent a novel biomarker of therapeutic response, with this chemotherapy regimen, in women with recurrent, drug-resistant ovarian cancer

    Adenoviral-delivered HE4-HSV-tk sensitizes ovarian cancer cells to ganciclovir

    Get PDF
    Ovarian cancer (OC) is most often contained within the peritoneal cavity, making it an ideal disease for adenoviral-delivered gene therapies. In effort to develop a safe and effective gene therapy for OC, we created a replication deficient adenovirus bearing the herpes simplex thymidine kinase (HSV-tk) gene under direction of the tumor specific promoter human epididymis protein 4 (HE4). The purpose of this study was to investigate the ability of our adenoviral construct to transduce OC cells in vitro and mediate transgene expression of HSV-tk, thereby sensitizing OC to the pro-drug ganciclovir. Cisplatin-sensitive (CS) and -resistant (CR) A2780 OC cells, infected with virus for 6 hours at 100, 500, and 1000 multiplicity of infection followed by ganciclovir treatment every other day for 5 days, were assayed for cell viability. Adenoviral-mediated transgene expression increased with increasing amounts of virus and peaked at 48 hours after transduction in both A2780-CS and -CR. Unexpectedly, ganciclovir alone was slightly toxic to both A2780 cell lines (IC50 of 234.9 μg/mL and 257.2 μg/mL in A2780-CS and -CR, respectively). Transduction with ADV-HE4-HSV-tk followed by ganciclovir treatment increased (P<0.05) cell killing up to ten-fold, lowering the IC50 to 23.9 μg/mL and 32.6 μg/mL in A2780-CS and -CR, respectively, at 1000 multiplicity of infection. The results support the potential use of this approach as a gene therapy for OC, a disease that accounts for more deaths than any other cancer of the female reproductive system

    Therapeutic targeting using tumor specific peptides inhibits long non-coding RNA HOTAIR activity in ovarian and breast cancer

    Get PDF
    Long non-coding RNAs (lncRNAs) play key roles in human diseases, including cancer. Functional studies of the lncRNA HOTAIR (HOX transcript antisense RNA) provide compelling evidence for therapeutic targeting of HOTAIR in cancer, but targeting lncRNAs in vivo has proven to be difficult. In the current study, we describe a peptide nucleic acids (PNA)-based approach to block the ability of HOTAIR to interact with EZH2 and subsequently inhibit HOTAIR-EZH2 activity and resensitize resistant ovarian tumors to platinum. Treatment of HOTAIR-overexpressing ovarian and breast cancer cell lines with PNAs decreased invasion and increased chemotherapy sensitivity. Furthermore, the mechanism of action correlated with reduced nuclear factor-kappaB (NF-κB) activation and decreased expression of NF-κB target genes matrix metalloprotease 9 and interleukin 6. To deliver the anti-lncRNA to the acidic (pH approximately 6) tumor microenvironment, PNAs were conjugated to pH-low insertion peptide (pHLIP). Treatment of mice harboring platinum-resistant ovarian tumor xenografts with pHLIP-PNA constructs suppressed HOTAIR activity, reduced tumor formation and improved survival. This first report on pHLIP-PNA lncRNA targeting solid tumors in vivo suggests a novel cancer therapeutic approach

    IL-6 mediates platinum-induced enrichment of ovarian cancer stem cells

    Get PDF
    In high-grade serous ovarian cancer (OC), chemotherapy eliminates the majority of tumor cells, leaving behind residual tumors enriched in OC stem cells (OCSC). OCSC, defined as aldehyde dehydrogenase–positive (ALDH+), persist and contribute to tumor relapse. Inflammatory cytokine IL-6 is elevated in residual tumors after platinum treatment, and we hypothesized that IL-6 plays a critical role in platinum-induced OCSC enrichment. We demonstrate that IL-6 regulates stemness features of OCSC driven by ALDH1A1 expression and activity. We show that platinum induces IL-6 secretion by cancer-associated fibroblasts in the tumor microenvironment, promoting OCSC enrichment in residual tumors after chemotherapy. By activating STAT3 and upregulating ALDH1A1 expression, IL-6 treatment converted non-OCSC to OCSC. Having previously shown altered DNA methylation in OCSC, we show here that IL-6 induces DNA methyltransferase 1 (DNMT1) expression and the hypomethylating agent (HMA) guadecitabine induced differentiation of OCSC and reduced — but did not completely eradicate — OCSC. IL-6 neutralizing antibody (IL-6-Nab) combined with HMA fully eradicated OCSC, and the combination blocked IL-6/IL6-R/pSTAT3–mediated ALDH1A1 expression and eliminated OCSC in residual tumors that persisted in vivo after chemotherapy. We conclude that IL-6 signaling blockade combined with an HMA can eliminate OCSC after platinum treatment, supporting this strategy to prevent tumor recurrence after standard chemotherapy
    • …
    corecore