37 research outputs found

    Aluminum-silicon Interdiffusion in Screen Printed Metal Contacts for Silicon based Solar Cells Applications☆

    Get PDF
    Abstract In this work we propose a detailed investigation of the Al – Si interdiffusion that occurs during the firing process of the Al-Si back contact of silicon based solar cells. The investigation is based on high resolution scanning electron microscopy (SEM) and compositional microanalysis with energy dispersive X-Ray microanalysis (EDX). We have found a dependence of Si precipitation in the Al matrix depending on the microstructure of the Al screen printable paste. We suggest a gettering effect promoted by the larger Al particles lying within the Al paste being able to affect the Al paste resistivity, the Al distribution within the BSF region of the solar cell, thus affecting the solar cell performances and finally the Al paste thermal expansion coefficient. Finally we demonstrate that the presence of the glass frit reduces the surface tension and, homogenizes the diffusion process. Reduction of surface tension decreases the internal pressure and increases the Si interdiffusion in Al

    New Selective Processing Technique for Solar Cells

    Get PDF
    Abstract A new selective processing technique based on a confined dynamic liquid drop\meniscus is presented. This approach is based on localized wet treatment of silicon wafers using confined and dynamic liquid drop that while in contact with the wafer forms a dynamic liquid meniscus. Such new technique allows to touch in specific defined positions the silicon wafer (front and/or back) in order to perform any kind of wet processing without the need of protective photo-resist. The new selective processing technique allows the metallizations (front and back) of mono and multi crystalline silicon solar cells. The front grid contacts are obtained by locally etching the silicon nitride, forming in a thin layer of meso-porous silicon and totally filling the meso-porous layer by pulse reverse plating a Nickel film. Copper and Tin are then electroplated using the same selective processing. This technology provides an effective solution to avoid silver pastes for front contact grid, as it guarantees low specific contact resistivity (550 μΩcm 2 on a 75 Ω/□ n-type doped emitter) and good adhesion to the silicon substrate (i.e. greater than 550 g/mm). The Al back side of the solar cell are also treated by the new selective process. Tin is directly deposited on Aluminum back contact showing adhesion higher than silver on silicon (i.e. > 1N/mm)

    Electrochemical and hydrothermal deposition of ZnO on silicon: from continuous films to nanocrystals

    Get PDF
    This article presents the study of the electrochemical deposition of zinc oxide from the non-aqueous solution based on dimethyl sulfoxide and zinc chloride into the porous silicon matrix. The features of the deposition process depending on the thickness of the porous silicon layer are presented. It is shown that after deposition process the porous silicon matrix is filled with zinc oxide nanocrystals with a diameter of 10–50 nm. The electrochemically deposited zinc oxide layers on top of porous silicon are shown to have a crystalline structure. It is also shown that zinc oxide crystals formed by hydrothermal method on the surface of electrochemically deposited zinc oxide film demonstrate ultra-violet luminescence. The effect of the porous silicon layer thickness on the morphology of the zinc oxide is shown. The structures obtained demonstrated two luminescence bands peaking at the 375 and 600 nm wavelengths. Possible applications of ZnO nanostructures, porous and continuous polycrystalline ZnO films such as gas sensors, light-emitting diodes, photovoltaic devices, and nanopiezo energy generators are considered. Aspects of integration with conventional silicon technology are also discussed

    The Top-Implart Proton Linear Accelerator: Interim Characteristics of the 35 Mev Beam

    Get PDF
    In the framework of the Italian TOP-IMPLART project (Regione Lazio), ENEA-Frascati, ISS and IFO are developing and constructing the first proton linear accelerator based on an actively scanned beam for tumor radiotherapy with final energy of 150 MeV. An important feature of this accelerator is modularity: an exploitable beam can be delivered at any stage of its construction, which allows for immediate characterization and virtually continuous improvement of its performance. Currently, a sequence of 3 GHz accelerating modules combined with a commercial injector operating at 425 MHz delivers protons up to 35 MeV. Several dosimetry systems were used to obtain preliminary characteristics of the 35-MeV beam in terms of stability and homogeneity. Short-term stability and homogeneity better than 3% and 2.6%, respectively, were demonstrated; for stability an improvement with respect to the respective value obtained for the previous 27 MeV beam

    Dielectric Lens Optimization for Conical Helix THz Antennas

    No full text

    Smart flexible planar electrodes for electrochemotherapy and biosensing

    No full text
    Electroporationis an effective method to deliver drugs into tumor cells to kill them, by applying a pulsed electric field to the cellular membrane [1, 2]. Existing electrodes consist of clamping claws or arrays of needles and can be effectively applied only to small areas. New electrodes that can treat large areas are sought; flexibility is needed to adapt to irregular tumor shape and, to be folded to enter from small surgical opening. In this work we present the design and test of a 16 cm2 flexible electrode for electroporation with biosensing capabilities, built with standard flexible circuit technologies enclosed in a biocompatible package. The electrode contains electronics to provide cryptography-based identification to the electroporation machine to avoid setup errors and protection against use of counterfeited electrodes. In-vitro tests of the electrode show that electroporation occurs up to a depth of 8 mm with 100% electroporation efficiency over the 30% of electrode area. Temperature rise on the electrode during treatment does not exceed 6 degrees celsius, a value that not causes damage to the cells
    corecore