225 research outputs found

    Counteraction of HCV-induced oxidative stress concurs to establish chronic infection in liver cell cultures

    Get PDF
    Hepatitis C virus (HCV) is a blood-borne pathogen causing acute and chronic hepatitis. A significant number of people chronically infected with HCV develop cirrhosis and/or liver cancer. The pathophysiologic mechanisms of hepatocyte damage associated with chronic HCV infection are not fully understood yet, mainly due to the lack of an in vitro system able to recapitulate the stages of infection in vivo. Several studies underline that HCV virus replication depends on redox-sensitive cellular pathways; in addition, it is known that virus itself induces alterations of the cellular redox state. However, the exact interplay between HCV replication and oxidative stress has not been elucidated. In particular, the role of reduced glutathione (GSH) in HCV replication and infection is still not clear. We set up an in vitro system, based on low m.o.i. of Huh7.5 cell line with a HCV infectious clone (J6/JFH1), that reproduced the acute and persistent phases of HCV infection up to 76 days of culture. We demonstrated that the acute phase of HCV infection is characterized by the elevated levels of reactive oxygen species (ROS) associated in part with an increase of NADPH-oxidase transcripts and activity and a depletion of GSH accompanied by high rates of viral replication and apoptotic cell death. Conversely, the chronic phase is characterized by a reestablishment of reduced environment due to a decreased ROS production and increased GSH content in infected cells that might concur to the establishment of viral persistence. Treatment with the prooxidant auranofin of the persistently infected cultures induced the increase of viral RNA titer, suggesting that a prooxidant state could favor the reactivation of HCV viral replication that in turn caused cell damage and death. Our results suggest that targeting the redox-sensitive host-cells pathways essential for viral replication and/or persistence may represent a promising option for contrasting HCV infection

    Antimicrobial peptides for novel antiviral strategies in the current post-COVID-19 pandemic

    Get PDF
    The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted how urgent and necessary the discovery of new antiviral compounds is for novel therapeutic approaches. Among the various classes of molecules with antiviral activity, antimicrobial peptides (AMPs) of innate immunity are among the most promising ones, mainly due to their different mechanisms of action against viruses and additional biological properties. In this review, the main physicochemical characteristics of AMPs are described, with particular interest toward peptides derived from amphibian skin. Living in aquatic and terrestrial environments, amphibians are one of the richest sources of AMPs with different primary and secondary structures. Besides describing the various antiviral activities of these peptides and the underlying mechanism, this review aims at emphasizing the high potential of these small molecules for the development of new antiviral agents that likely reduce the selection of resistant strains

    Antiviral and antioxidant activity of a hydroalcoholic extract from Humulus lupulus L.

    Get PDF
    A hydroalcoholic extract from female inflorescences of Humulus lupulus L. (HOP extract) was evaluated for its anti-influenza activity. The ability of the extract to interfere with different phases of viral replication was assessed, as well as its effect on the intracellular redox state, being unbalanced versus the oxidative state in infected cells. The radical scavenging power, inhibition of lipoperoxidation, and ferric reducing activity were assayed as antioxidant mechanisms. A phytochemical characterization of the extract was also performed. We found that HOP extract significantly inhibited replication of various viral strains, at different time from infection. Viral replication was partly inhibited when virus was incubated with extract before infection, suggesting a direct effect on the virions. Since HOP extract was able to restore the reducing conditions of infected cells, by increasing glutathione content, its antiviral activity might be also due to an interference with redox-sensitive pathways required for viral replication. Accordingly, the extract exerted radical scavenging and reducing effects and inhibited lipoperoxidation and the tBOOH-induced cytotoxicity. At phytochemical analysis, different phenolics were identified, which altogether might contribute to HOP antiviral effect. In conclusion, our results highlighted anti-influenza and antioxidant properties of HOP extract, which encourage further in vivo studies to evaluate its possible application

    A polyphenol rich extract from Solanum melongena L. DR2 peel exhibits antioxidant properties and anti-herpes simplex virus type 1 activity in vitro

    Get PDF
    DR2B and DR2C extracts, obtained by ethanolic maceration of peel from commercially and physiologically ripe aubergine berries, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions in host cells. The antioxidative cytoprotective effects against tBOOH-induced damage were assessed in Caco2 cells, while antiviral activity was studied in Vero cells; polyphenolic fingerprints were characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified. Both samples reduced reactive oxygen species (ROS) production and exhibited scavenging and chelating properties. DR2C partly counteracted the tBOOH-induced cytotoxicity, with a remarkable lowering of lactate metabolism under both normoxia and hypoxia; interestingly, it increased intracellular GSH levels. Furthermore, DR2C inhibited the HSV-1 replication when added for 24 h after viral adsorption, as also confirmed by the reduction of many viral proteins’ expression. Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be correlated to its antioxidant properties. Although further studies are needed to better characterize DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent

    Antioxidant activity and antiherpetic effects of a Solanum melongena L. genotype.

    Get PDF
    Herpes Simplex Virus type 1 (HSV-1) is a recurrent human virus, which develops quickly resistance to drugs commercially available, so increasing the need to study new sources of bioactive antiviral agents. To this end, extracts from medicinal plants, essential oils or fruits with antiviral properties are widely investigated in order to found the bioactive compounds. Among them, flavonoids and anthocyanins have been shown to inhibit the HSV-1, due to a probable virucidal action, likely antioxidant mechanisms (Khan et al., 2005). Besides, it is generally accepted that oxidative stress plays an important role in the pathogenesis of viral diseases (Peterhans, 1997). Also Solanaceae glycoalkaloids were found to be active against HSV-1 (Ikeda et al., 2000). On the basis of these evidences, in the present study, the antioxidant and antiherpetic properties of a DR2 eggplant (Solanum melongena L.) genotype (Mennella et al., 2012) were studied. Eggplant fruit is one of the most common vegetable consumed all around the world and an important source of both polyphenols and glycoalkaloids, including delphinidin, nasunin, chlorogenic acid and solamargine (Mennella et al., 2010). To perform the experiments, a 70% ethanol extract (pH 3) from the peel of the DR2 eggplant fruit, at both the commercial (B) and physiological (C) stage of ripeness, was prepared. The polyphenolic content was evaluated by high-performance thin-layer chromatography (HPTLC) and determined colorimetrically. Different antioxidant mechanisms, among which the radical scavenging power and the ability to block the ROS generation (by reducing and/or chelating mechanisms) were studied (Di Sotto et al., 2013). The antiherpetic activity of the extracts (DR2-B and DR2-C) was evaluated by the plaque assay in monkey kidney epithelial (Vero) cells, after infection with HSV-1 (Civitelli et al., 2014). In agreement with the colorimetric determinations, the HPTLC analysis showed the presence of different polyphenols in both the extracts, particularly the anthocyanin, delphinidin 3-O-β-rutinoside. The samples possessed antioxidant properties, being able to scavenge different radical species and to block the ROS generation by chelating mechanisms. As regard the antiherpetic activity, in spite of a null effect of DR2-B, the extract DR2-C inhibited the HSV-1 replication in a dose-dependent manner, reaching a 93% inhibition at concentration of 500 g/ml. When administered during different phases of the virus life-cycle, DR2-C inhibited the viral replication of about 50% during the adsorption period: these data were confirmed by the immunoblotting analysis, in which several herpetic proteins resulted inhibited. Present data highlight that DR2-C extract possess antiherpetic properties, likely due to an impairment of specific steps of the virus life-cycle. Taking into account that the HSV-1 replication requires an impairment of the intracellular redox status, the antioxidant properties of DR2-C extract, likely due to the presence of different polyphenolic compounds, could be involved in the antiviral effects found. In conclusion, the beneficial antioxidant and antiherpetic properties of DR-2C suggest a possible application of S. melongena as dietary supplement, or included in topical formulations, to treat the herpetic skin symptomatic lesions

    Influenza Virus Down-Modulates G6PD Expression and Activity to Induce Oxidative Stress and Promote Its Replication

    Get PDF
    none10no: Influenza virus infection induces oxidative stress in host cells by decreasing the intracellular content of glutathione (GSH) and increasing reactive oxygen species (ROS) level. Glucose-6-phosphate dehydrogenase (G6PD) is responsible for the production of reducing equivalents of nicotinamide adenine dinucleotide phosphate (NADPH) that is used to regenerate the reduced form of GSH, thus restoring redox homeostasis. Cells deficient in G6PD display elevated levels of ROS and an increased susceptibility to viral infection, although the consequences of G6PD modulation during viral infection remain to be elucidated. In this study, we demonstrated that influenza virus infection decreases G6PD expression and activity, resulting in an increase in oxidative stress and virus replication. Moreover, the down regulation of G6PD correlated with a decrease in the expression of nuclear factor erythroid 2-related factor 2 (NRF2), a key transcription factor that regulates the expression of the antioxidant response gene network. Also down-regulated in influenza virus infected cells was sirtuin 2 (SIRT2), a NADPH-dependent deacetylase involved in the regulation of G6PD activity. Acetylation of G6PD increased during influenza virus infection in a manner that was strictly dependent on SIRT2 expression. Furthermore, the use of a pharmacological activator of SIRT2 rescued GSH production and NRF2 expression, leading to decreased influenza virus replication. Overall, these data identify a novel strategy used by influenza virus to induce oxidative stress and to favor its replication in host cells. These observations furthermore suggest that manipulation of metabolic and oxidative stress pathways could define new therapeutic strategies to interfere with influenza virus infection.openDe Angelis, Marta; Amatore, Donatella; Checconi, Paola; Zevini, Alessandra; Fraternale, Alessandra; Magnani, Mauro; Hiscott, John; De Chiara, Giovanna; Palamara, Anna Teresa; Nencioni, LuciaDe Angelis, Marta; Amatore, Donatella; Checconi, Paola; Zevini, Alessandra; Fraternale, Alessandra; Magnani, Mauro; Hiscott, John; De Chiara, Giovanna; Palamara, Anna Teresa; Nencioni, Luci

    Differential redox state contributes to sex disparities in the response to influenza virus infection in male and female mice

    Get PDF
    Influenza virus replicates intracellularly exploiting several pathways involved in the regulation of host responses. The outcome and the severity of the infection are thus strongly conditioned by multiple host factors, including age, sex, metabolic, and redox conditions of the target cells. Hormones are also important determinants of host immune responses to influenza and are recently proposed in the prophylaxis and treatment. This study shows that female mice are less susceptible than males to mouse-adapted influenza virus (A/PR8/H1N1). Compared with males, PR8-infected females display higher survival rate (+36%), milder clinical disease, and less weight loss. They also have milder histopathological signs, especially free alveolar area is higher than that in males, even if pro-inflammatory cytokine production shows slight differences between sexes; hormone levels, moreover, do not vary significantly with infection in our model. Importantly, viral loads (both in terms of viral M1 RNA copies and tissue culture infectious dose 50%) are lower in PR8-infected females. An analysis of the mechanisms contributing to sex disparities observed during infection reveals that the female animals have higher total antioxidant power in serum and their lungs are characterized by increase in (i) the content and biosynthesis of glutathione, (ii) the expression and activity of antioxidant enzymes (peroxiredoxin 1, catalase, and glutathione peroxidase), and (iii) the expression of the anti-apoptotic protein Bcl-2. By contrast, infected males are characterized by high expression of NADPH oxidase 4 oxidase and phosphorylation of p38 MAPK, both enzymes promoting viral replication. All these factors are critical for cell homeostasis and susceptibility to infection. Reappraisal of the importance of the host cell redox state and sex-related effects may be useful in the attempt to develop more tailored therapeutic interventions in the fight against influenza

    Sex Differences in the Response to Viral Infections: TLR8 and TLR9 Ligand Stimulation Induce Higher IL10 Production in Males

    Get PDF
    BACKGROUND: Susceptibility to viral infections as well as their severity are higher in men than in women. Heightened antiviral responses typical of women are effective for rapid virus clearance, but if excessively high or prolonged, can result in chronic/inflammatory pathologies. We investigated whether this variability could be in part attributable to differences in the response to the Toll-Like Receptors (TLR) more involved in the virus recognition. METHODS: Cytokine production by peripheral blood mononuclear cells (PBMCs) from male and female healthy donors after stimulation with Toll-like receptors (TLR) 3, 7, 8, 9 ligands or with viruses (influenza and Herpes-simplex-1) was evaluated. RESULTS: Compared to females, PBMCs from males produced not only lower amounts of IFN-α in response to TLR7 ligands but also higher amounts of the immunosuppressive cytokine IL10 after stimulation with TLR8 and TLR9 ligands or viruses. IL10 production after TLR9 ligands or HSV-1 stimulation was significantly related with plasma levels of sex hormones in both groups, whereas no correlation was found in cytokines produced following TLR7 and TLR8 stimulation. CONCLUSIONS: Given the role of an early production of IL10 by cells of innate immunity in modulating innate and adaptive immune response to viruses, we suggest that sex-related difference in its production following viral nucleic acid stimulation of TLRs may be involved in the sex-related variability in response to viral infections

    Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress

    Get PDF
    Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions

    Investigation of Commiphora myrrha (Nees) Engl. oil and its main components for antiviral activity

    Get PDF
    The resinous exudate produced by Commiphora myrrha (Nees) Engl. is commonly known as true myrrh and has been used since antiquity for several medicinal applications. Hundreds of metabolites have been identified in the volatile component of myrrh so far, mainly sesquiterpenes. Although several efforts have been devoted to identifying these sesquiterpenes, the phytochemical analyses have been performed by gas-chromatography/mass spectrometry (GC–MS) where the high temperature employed can promote degradation of the components. In this work, we report the extraction of C. myrrha by supercritical CO2, an extraction method known for the mild extraction conditions that allow avoiding undesired chemical reactions during the process. In addition, the analyses of myrrh oil and of its metabolites were performed by HPLC and GC–MS. Moreover, we evaluated the antiviral activity against influenza A virus of the myrrh extracts, that was possible to appreciate after the addition of vitamin E acetate (α-tocopheryl acetate) to the extract. Further, the single main bioactive components of the oil of C. myrrha commercially available were tested. Interestingly, we found that both furanodienone and curzerene affect viral replication by acting on different steps of the virus life cycle
    corecore