2 research outputs found

    The myxozoan minicollagen gene repertoire was not simplified by the parasitic lifestyle: computational identification of a novel myxozoan minicollagen gene

    Get PDF
    Background Lineage-specific gene expansions represent one of the driving forces in the evolutionary dynamics of unique phylum traits. Myxozoa, a cnidarian subphylum of obligate parasites, are evolutionarily altered and highly reduced organisms with a simple body plan including cnidarian-specific organelles and polar capsules (a type of nematocyst). Minicollagens, a group of structural proteins, are prominent constituents of nematocysts linking Myxozoa and Cnidaria. Despite recent advances in the identification of minicollagens in Myxozoa, the evolutionary history and diversity of minicollagens in Myxozoa and Cnidaria remain elusive. Results We generated new transcriptomes of two myxozoan species using a novel pipeline for filtering of closely related contaminant species in RNA-seq data. Mining of our transcriptomes and published omics data confirmed the existence of myxozoan Ncol-4, reported only once previously, and revealed a novel noncanonical minicollagen, Ncol-5, which is exclusive to Myxozoa. Phylogenetic analyses support a close relationship between myxozoan Ncol-1-3 with minicollagens of Polypodium hydriforme, but suggest independent evolution in the case of the myxozoan minicollagens Ncol-4 and Ncol-5. Additional genome- and transcriptome-wide searches of cnidarian minicollagens expanded the dataset to better clarify the evolutionary trajectories of minicollagen. Conclusions The development of a new approach for the handling of next-generation data contaminated by closely related species represents a useful tool for future applications beyond the field of myxozoan research. This data processing pipeline allowed us to expand the dataset and study the evolution and diversity of minicollagen genes in Myxozoa and Cnidaria. We identified a novel type of minicollagen in Myxozoa (Ncol-5). We suggest that the large number of minicollagen paralogs in some cnidarians is a result of several recent large gene multiplication events. We revealed close juxtaposition of minicollagens Ncol-1 and Ncol-4 in myxozoan genomes, suggesting their common evolutionary history. The unique gene structure of myxozoan Ncol-5 suggests a specific function in the myxozoan polar capsule or tubule. Despite the fact that myxozoans possess only one type of nematocyst, their gene repertoire is similar to those of other cnidarians

    EukRef: Phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution.

    No full text
    Environmental sequencing has greatly expanded our knowledge of micro-eukaryotic diversity and ecology by revealing previously unknown lineages and their distribution. However, the value of these data is critically dependent on the quality of the reference databases used to assign an identity to environmental sequences. Existing databases contain errors and struggle to keep pace with rapidly changing eukaryotic taxonomy, the influx of novel diversity, and computational challenges related to assembling the high-quality alignments and trees needed for accurate characterization of lineage diversity. EukRef (eukref.org) is an ongoing community-driven initiative that addresses these challenges by bringing together taxonomists with expertise spanning the eukaryotic tree of life and microbial ecologists, who use environmental sequence data to develop reliable reference databases across the diversity of microbial eukaryotes. EukRef organizes and facilitates rigorous mining and annotation of sequence data by providing protocols, guidelines, and tools. The EukRef pipeline and tools allow users interested in a particular group of microbial eukaryotes to retrieve all sequences belonging to that group from International Nucleotide Sequence Database Collaboration (INSDC) (GenBank, the European Nucleotide Archive [ENA], or the DNA DataBank of Japan [DDBJ]), to place those sequences in a phylogenetic tree, and to curate taxonomic and environmental information for the group. We provide guidelines to facilitate the process and to standardize taxonomic annotations. The final outputs of this process are (1) a reference tree and alignment, (2) a reference sequence database, including taxonomic and environmental information, and (3) a list of putative chimeras and other artifactual sequences. These products will be useful for the broad community as they become publicly available (at eukref.org) and are shared with existing reference databases
    corecore