5 research outputs found

    Chemical secretion and morpho-histology of the pygidial glands in two Palaearctic predatory ground beetle species: Carabus (Tomocarabus) convexus and C. (Procrustes) coriaceus (Coleoptera: Carabidae)

    No full text
    Although all ground beetles have pygidial glands homologous in structure and function, there are many differences among species, often significant, in terms of chemical composition of the secretion and morphology of the gland components. In this paper, two predatory ground beetle species of the genus Carabus, namely C. (Tomocarabus) convexus and C. (Procrustes) coriaceus, were subjected to chemical, morphological and histological study of their pygidial glands and the glands' secretions. Altogether, three carboxylic acids were isolated, and the pygidial gland reservoir and other glandular parts are morphologically described in the study. We also tested whether there exist differences in chemical content of the secretion obtained by upsetting the beetles in a traditional way and that obtained directly from intact reservoirs. Detailed data on morphology of the pygidial glands of both species are presented, as well as updated information about the chemical components of the glandular secretions. Apart from tiglic and methacrylic acids, which are typical for Carabus pygidial secretions, we also found benzoic acid as a minor component of the secretion in both species. In addition, a chemotaxonomic overview of Carabus taxa is given in the paper

    Antimicrobial activity of the pygidial gland secretion of three ground beetle species (Insecta: Coleoptera: Carabidae)

    No full text
    The antimicrobial properties of the pygidial gland secretions released by the adults of the three ground beetle species, Carabus ullrichii, C. coriaceus, and Abax parallelepipedus, have been tested. Microdilution method was applied for detection of minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), and minimal fungicidal concentrations (MFCs). Additionally, morpho-histology of the pygidial glands is investigated. We have tested 16 laboratory and clinical strains of human pathogens-eight bacterial both gram-positive and gram-negative species and eight fungal species. The pygidial secretion samples of C. ullrichii have showed the strongest antimicrobial effect against all strains of treated bacteria and fungi. Staphylococcus aureus, Lysteria monocytogenes, and Salmonella typhimurium proved to be the most sensitive bacterial strains. Penicillium funiculosum proved to be the most sensitive micromycete, while P. ochrochloron and P. verrucosum var. cyclopium the most resistant micromycetes. The pygidial secretion of C. coriaceus has showed antibacterial potential solely against Pseudomonas aeruginosa and antifungal activity against Aspergillus fumigatus, A. versicolor, A. ochraceus, and P. ochrochloron. Antibacterial properties of pygidial gland secretion of A. parallelepipedus were achieved against P. aeruginosa, while antifungal activity was detected against five of the eight tested micromycetes (A. fumigatus, A. versicolor, A. ochraceus, Trichoderma viride, and P. verrucosum var. cyclopium). Commercial antibiotics Streptomycin and Ampicillin and mycotics Ketoconazole and Bifonazole, applied as the positive controls, showed higher antibacterial/antifungal properties for all bacterial and fungal strains. The results of this observation might have a significant impact on the environmental aspects and possible medical purpose in the future

    Antifungal activity of the pygidial gland secretion of Laemostenus punctatus (Coleoptera: Carabidae) against cave-dwelling micromycetes

    No full text
    The antifungal potential of the pygidial gland secretion of the troglophilic ground beetle Laemostenus punctatus from a cave in Southeastern Serbia against cave-dwelling micromycetes, isolated from the same habitat, has been investigated. Eleven collected samples were analyzed and 32 isolates of cave-dwelling fungi were documented. A total of 14 fungal species were identified as members of the genera Aspergillus, Penicillium, Alternaria, Cladosporium, Rhizopus, Trichoderma, Arthrinium, Aureobasidium, Epicoccum, Talaromyces, and Fusarium. Five isolates were selected for testing the antifungal activity of the pygidial gland secretion : Talaromyces duclauxi, Aspergillus brunneouniseriatus, Penicillium sp., Rhizopus stolonifer, and Trichoderma viride. The microdilution method has been applied to detect minimal inhibitory concentrations (MICs) and minimal fungicidal concentrations (MFCs). The most sensitive isolate was Penicillium sp., while the other isolates demonstrated a high level of resistance to the tested agent. L. punctatus has developed a special mechanism of producing specific compounds that act synergistically within the secretion mixture, which are responsible for the antifungal action against pathogens from the cave. The results open opportunities for further research in the field of ground beetle defense against pathogens, which could have an important application in human medicine, in addition to the environmental impact, primarily

    Molecular Diversity of Compounds from Pygidial Gland Secretions of Cave-Dwelling Ground Beetles: The First Evidence

    No full text
    Three adult cave-dwelling ground beetle species were induced to discharge secretions of their pygidial glands into vials. Dichloromethane extraction was used to obtain the secretions. In total, 42 compounds were identified by GC/MS analysis. Pheggomisetes ninae contained 32 glandular compounds, Laemostenus (Pristonychus) punctatus 13, whereas Duvalius (Paraduvalius) milutini had nine compounds. Caproic, oleic, palmitic, and stearic acids were present in the samples of all analyzed species. Undecane was predominant in the extract of L. punctatus. Palmitic acid was the major component in the secretion of D. milutini. Finally, the most abundant compounds in P. ninae secretion were heptacosene and nonacosadienes. Herein, we present the first data on the identification of pygidial gland secretion components in both troglophilous and troglobite cave-dwelling ground beetles. Some compounds are reported for the first time in the secretions of ground beetles and other higher or lower taxa. The adaptation to underground life has not led to a reduction or changes in the chemical defense mechanism in the analyzed troglophilous and troglobitic Platyninae and Trechinae taxa.Serbian Ministry of Education, Science, and Technological Development {[}173038, 172053, 173027

    Plants of the Family Asteraceae: Evaluation of Biological Properties and Identification of Phenolic Compounds

    No full text
    The present study focused on the biological analysis of five plants: Achillea millefolium, Arnica montana, Calendula officinalis, Chamaemelum nobile and Taraxacum officinale. The results indicated that A. montana extracts showed the highest content of phenolic compounds. Regarding the biological properties, A. millefolium had outstanding antioxidant activity, while C. officinalis had the highest rate of antimicrobial and antifungal activity. The anti-inflammatory and cytotoxic activities reflected that C. nobile showed the highest effect. In enzyme assays, C. nobile and C. officinalis extracts showed the highest inhibitory effects on acetylcholinesterase and butyrylcholinesterase enzymes. Overall, this study provides scientific evidence for the evaluation of the potential of medicinal plant extracts for the development of new products
    corecore