2,055 research outputs found

    Modified TAP equations for the SK spin glass

    Full text link
    The stability of the TAP mean field equations is reanalyzed with the conclusion that the exclusive reason for the breakdown at the spin glass instability is an inconsistency for the value of the local susceptibility. A new alternative approach leads to modified equations which are in complete agreement with the original ones above the instability. Essentially altered results below the instability are presented and the consequences for the dynamical mean field equations are discussed.Comment: 7 pages, 2 figures, final revised version to appear in Europhys. Let

    Local Probabilistic Decoding of a Quantum Code

    Full text link
    flip is an extremely simple and maximally local classical decoder which has been used to great effect in certain classes of classical codes. When applied to quantum codes there exist constant-weight errors (such as half of a stabiliser) which are uncorrectable for this decoder, so previous studies have considered modified versions of flip, sometimes in conjunction with other decoders. We argue that this may not always be necessary, and present numerical evidence for the existence of a threshold for flip when applied to the looplike syndromes of a three-dimensional toric code on a cubic lattice. This result can be attributed to the fact that the lowest-weight uncorrectable errors for this decoder are closer (in terms of Hamming distance) to correctable errors than to other uncorrectable errors, and so they are likely to become correctable in future code cycles after transformation by additional noise. Introducing randomness into the decoder can allow it to correct these "uncorrectable" errors with finite probability, and for a decoding strategy that uses a combination of belief propagation and probabilistic flip we observe a threshold of 5.5%\sim5.5\% under phenomenological noise. This is comparable to the best known threshold for this code (7.1%\sim7.1\%) which was achieved using belief propagation and ordered statistics decoding [Higgott and Breuckmann, 2022], a strategy with a runtime of O(n3)O(n^3) as opposed to the O(n)O(n) (O(1)O(1) when parallelised) runtime of our local decoder. We expect that this strategy could be generalised to work well in other low-density parity check codes, and hope that these results will prompt investigation of other previously overlooked decoders.Comment: 10 pages + 1 page appendix, 7 figures. Comments welcome.; v3 Published versio

    Protein-crystal growth experiment (planned)

    Get PDF
    To evaluate the effectiveness of a microgravity environment on protein crystal growth, a system was developed using 5 cubic feet Get Away Special payload canister. In the experiment, protein (myoglobin) will be simultaneously crystallized from an aqueous solution in 16 crystallization units using three types of crystallization methods, i.e., batch, vapor diffusion, and free interface diffusion. Each unit has two compartments: one for the protein solution and the other for the ammonium sulfate solution. Compartments are separated by thick acrylic or thin stainless steel plates. Crystallization will be started by sliding out the plates, then will be periodically recorded up to 120 hours by a still camera. The temperature will be passively controlled by a phase transition thermal storage component and recorded in IC memory throughout the experiment. Microgravity environment can then be evaluated for protein crystal growth by comparing crystallization in space with that on Earth

    Modified Thouless-Anderson-Palmer equations for the Sherrington-Kirkpatrick spin glass: Numerical solutions

    Full text link
    For large but finite systems the static properties of the infinite ranged Sherrington-Kirkpatrick model are numerically investigated in the entire the glass regime. The approach is based on the modified Thouless-Anderson-Palmer equations in combination with a phenomenological relaxational dynamics used as a numerical tool. For all temperatures and all bond configurations stable and meta stable states are found. Following a discussion of the finite size effects, the static properties of the state of lowest free energy are presented in the presence of a homogeneous magnetic field for all temperatures below the spin glass temperature. Moreover some characteristic features of the meta stable states are presented. These states exist in finite temperature intervals and disappear via local saddle node bifurcations. Numerical evidence is found that the excess free energy of the meta stable states remains finite in the thermodynamic limit. This implies a the `multi-valley' structure of the free energy on a sub-extensive scale.Comment: Revtex 10 pages 13 figures included, submitted to Phys.Rev.B. Shortend and improved version with additional numerical dat

    Hadron Physics and Confinement Physics in Lattice QCD

    Full text link
    We are aiming to construct Quark Hadron Physics and Confinement Physics based on QCD. Using SU(3)c_c lattice QCD, we are investigating the three-quark potential at T=0 and T0T \ne 0, mass spectra of positive and negative-parity baryons in the octet and the decuplet representations of the SU(3) flavor, glueball properties at T=0 and T0T \ne 0. We study also Confinement Physics using lattice QCD. In the maximally abelian (MA) gauge, the off-diagonal gluon amplitude is strongly suppressed, and then the off-diagonal gluon phase shows strong randomness, which leads to a large effective off-diagonal gluon mass, Moff1.2GeVM_{\rm off} \simeq 1.2 {\rm GeV}. Due to the large off-diagonal gluon mass in the MA gauge, infrared QCD is abelianized like nonabelian Higgs theories. In the MA gauge, there appears a macroscopic network of the monopole world-line covering the whole system. From the monopole current, we extract the dual gluon field BμB_\mu, and examine the longitudinal magnetic screening. We obtain mBm_B \simeq 0.5 GeV in the infrared region, which indicates the dual Higgs mechanism by monopole condensation. From infrared abelian dominance and infrared monopole condensation, low-energy QCD in the MA gauge is described with the dual Ginzburg-Landau (DGL) theory.Comment: Invited talk given at International Symposium on Hadrons and Nuclei, Seoul, Korea, 20-22 Feb 200

    A Dynamic Service Level Negotiation Mechanism for QoS Provisioning in NGEO Satellite Networks

    Get PDF
    科研費報告書収録論文(課題番号:17500030/研究代表者:加藤寧/インターネットと高親和性を有する次世代低軌道衛星ネットワークに関する基盤研究

    Weak nonlinearities: A new route to optical quantum computation

    Full text link
    Quantum information processing (QIP) offers the promise of being able to do things that we cannot do with conventional technology. Here we present a new route for distributed optical QIP, based on generalized quantum non-demolition measurements, providing a unified approach for quantum communication and computing. Interactions between photons are generated using weak non-linearities and intense laser fields--the use of such fields provides for robust distribution of quantum information. Our approach requires only a practical set of resources, and it uses these very efficiently. Thus it promises to be extremely useful for the first quantum technologies, based on scarce resources. Furthermore, in the longer term this approach provides both options and scalability for efficient many-qubit QIP.Comment: 7 Pages, 4 Figure

    SU(N)-symmetric quasi-probability distribution functions

    Full text link
    We present a set of N-dimensional functions, based on generalized SU(N)-symmetric coherent states, that represent finite-dimensional Wigner functions, Q-functions, and P-functions. We then show the fundamental properties of these functions and discuss their usefulness for analyzing N-dimensional pure and mixed quantum states.Comment: 16 pages, 2 figures. Updated text to reflect referee comment
    corecore