1,670 research outputs found

    Atomic trajectory characterization in a fountain clock based on the spectrum of a hyperfine transition

    Full text link
    We describe a new method to determine the position of the atomic cloud during its interaction with the microwave field in the cavity of a fountain clock. The positional information is extracted from the spectrum of the F=3,mF=0 to F=4,mF=-1 hyperfine transition, which shows a position dependent asymmetry when the magnetic C-field is tilted by a few degrees with respect to the cavity axis. Analysis of this spectral asymmetry provides the horizontal center-of-mass position for the ensemble of atoms contributing to frequency measurements. With an uncertainty on the order of 0.1 mm, the obtained information is useful for putting limits on the systematic uncertainty due to distributed cavity phase gradients. The validity of the new method is demonstrated through experimental evidence.Comment: 6 figures, submitted to PR

    Topological sensitivity and FMM-accelerated BEM applied to 3D acoustic inverse scattering

    No full text
    This study is set in the framework of inverse scattering of scalar (e.g. acoustic) waves. A qualitative probing technique based on the distribution of topological sensitivity of the cost functional associated with the inverse problem with respect to the nucleation of an infinitesimally-small hard obstacle is formulated. The sensitivity distribution is expressed as a bilinear formula involving the free field and an adjoint field associated with the cost function. These fields are computed by means of a boundary element formulation accelerated by the Fast Multipole method. A computationally fast approach for performing a global preliminary search based on the available overspecified boundary data is thus defined. Its usefulness is demonstrated through results of numerical experiments on the qualitative identification of a hard obstacle in a bounded acoustic domain, for configurations featuring O(105)O(10^{5}) nodal unknowns and O(10^{6})$ sampling points

    FM-BEM and topological derivative applied to inverse acoustic scattering

    No full text
    This study is set in the framework of inverse scattering of scalar (e.g. acoustic) waves. A qualitative probing technique based on the distribution of topological sensitivity of the cost functional associated with the inverse problem with respect to the nucleation of an infinitesimally-small hard obstacle is formulated. The sensitivity distribution is expressed as a bilinear formula involving the free field and an adjoint field associated with the cost function. These fields are computed by means of a boundary element formulation accelerated by the Fast Multipole method. A computationally fast approach for performing a global preliminary search based on the available overspecified boundary data is thus defined. Its usefulness is demonstrated through results of numerical experiments on the qualitative identification of a hard obstacle in a bounded acoustic domain, for configurations featuring O(10^{5}) nodal unknowns and O(10^{6}) sampling points

    Decomposed description of Ramsey spectra under atomic interactions

    Get PDF
    We introduce a description of Ramsey spectra under atomic interactions as a sum of decomposed components with differing dependence on interaction parameters. This description enables intuitive understanding of the loss of contrast and asymmetry of Ramsey spectra. We derive a quantitative relationship between the asymmetry and atomic interaction parameters, which enables their characterization without changing atom density. The model is confirmed through experiments with a Yb optical lattice clock

    Modeling light shifts in optical lattice clocks

    Get PDF
    We present an extended model for the lattice-induced light shifts of the clock frequency in optical lattice clocks, applicable to a wide range of operating conditions. The model extensions cover radial motional states with sufficient energies to invalidate the harmonic approximation of the confining potential. We reevaluate lattice-induced light shifts in our Yb optical lattice clock with an uncertainty of 6.1E-18 under typical clock operating conditions.Comment: 12 pages, 10 figure

    Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2

    Full text link
    We evaluate the frequency error from distributed cavity phase in the caesium fountain clock PTB-CSF2 at the Physikalisch-Technische Bundesanstalt with a combination of frequency measurements and ab initio calculations. The associated uncertainty is 1.3E-16, with a frequency bias of 0.4E-16. The agreement between the measurements and calculations explains the previously observed frequency shifts at elevated microwave amplitude. We also evaluate the frequency bias and uncertainty due to the microwave lensing of the atomic wavepackets. We report a total PTB-CSF2 systematic uncertainty of 4.1E-16.Comment: 15 pages, 5 figures, to be published in Metrologi

    Fast non-iterative methods for defect identification

    No full text
    This communication summarizes recent investigations on the identification of defects (cavities, inclusions) of unknown geometry and topology by means of the concept of topological sensitivity. This approach leads to the fast computation (equivalent to performing a few direct solutions), by means of ordinary numerical solution methods such as the BEM (used here), the FEM or the FDM, of defect indicator functions. Substantial further acceleration is obtained by using fast multipole accelerated BEMs. Possibilities afforded by this approach are demonstrated on numerical examples. The paper concludes with a discussion of further research on theoretical and numerical issues

    The use of disjunct eddy sampling methods for the determination of ecosystem level fluxes of trace gases

    Get PDF
    The concept of disjunct eddy sampling (DES) for use in measuring ecosystem-level micrometeorological fluxes is re-examined. The governing equations are discussed as well as other practical considerations and guidelines concerning this sampling method as it is applied to either the disjunct eddy covariance (DEC) or disjunct eddy accumulation (DEA) techniques. A disjunct eddy sampling system was constructed that could either be combined with relatively slow sensors (response time of 2 to 40 s) to measure fluxes using DEC, or could also be used to accumulate samples in stable reservoirs for later laboratory analysis (DEA technique). Both the DEC and DEA modes of this sampler were tested against conventional eddy covariance (EC) for fluxes of either CO2 (DEC) or isoprene (DEA). Good agreement in both modes was observed relative to the EC systems. However, the uncertainty in a single DEA flux measurement was considerable (40%) due to both the reduced statistical sampling and the analytical precision of the concentration difference measurements. We have also re-investigated the effects of nonzero mean vertical wind velocity on accumulation techniques as it relates to our DEA measurements. Despite the higher uncertainty, disjunct eddy sampling can provide an alternative technique to eddy covariance for determining ecosystem-level fluxes for species where fast sensors do not currently exist
    corecore