research

Atomic trajectory characterization in a fountain clock based on the spectrum of a hyperfine transition

Abstract

We describe a new method to determine the position of the atomic cloud during its interaction with the microwave field in the cavity of a fountain clock. The positional information is extracted from the spectrum of the F=3,mF=0 to F=4,mF=-1 hyperfine transition, which shows a position dependent asymmetry when the magnetic C-field is tilted by a few degrees with respect to the cavity axis. Analysis of this spectral asymmetry provides the horizontal center-of-mass position for the ensemble of atoms contributing to frequency measurements. With an uncertainty on the order of 0.1 mm, the obtained information is useful for putting limits on the systematic uncertainty due to distributed cavity phase gradients. The validity of the new method is demonstrated through experimental evidence.Comment: 6 figures, submitted to PR

    Similar works

    Full text

    thumbnail-image

    Available Versions